L moment diagrams for censored observations

Observed data sets containing values above or below the analytical threshold of measuring equipment are referred to as censored. Such data are frequently encountered in quality and quantity monitoring applications of water, soil, and air samples. Most of the previous literature on the statistical an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 1998-05, Vol.34 (5), p.1241-1249
Hauptverfasser: Zafirakou‐Koulouris, Antigoni, Vogel, Richard M., Craig, Scott M., Habermeier, Joerg
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1249
container_issue 5
container_start_page 1241
container_title Water resources research
container_volume 34
creator Zafirakou‐Koulouris, Antigoni
Vogel, Richard M.
Craig, Scott M.
Habermeier, Joerg
description Observed data sets containing values above or below the analytical threshold of measuring equipment are referred to as censored. Such data are frequently encountered in quality and quantity monitoring applications of water, soil, and air samples. Most of the previous literature on the statistical analysis of censored data relates to the problems of moment, parameter, and quantile estimation methods. Such estimation methods usually assume an underlying probability distribution. Few goodness‐of‐fit methods exist for censored data. We introduce L moment diagrams for the evaluation of the goodness of fit of alternative distributional hypotheses for left‐censored data. Experiments with artificial censored data sets document the conditions under which L moment diagrams should be useful. Our approach, like Hosking's [1995] approach for right censoring, derived L moment diagrams for left‐censored observations from partial probability‐weighted moments.
doi_str_mv 10.1029/97WR03712
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18509132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18509132</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3948-9328abc726daaca8b4d35669810ea944076c20c066039beb983d13b432866b773</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKcH_0FPgkjdl6bNlxx16hSGwlA3vISkzaTaNjPp1P17K5XdPL2X53l5eQk5pnBOIZEjifMZMKTJDhlQmaYxSmS7ZACQspgyifvkIIQ3AJpmHAfkbBrVrrZNGxWlfvW6DtHS-Si3TXDeFpEzwfpP3ZauCYdkb6mrYI_-ckiebq4fx7fx9GFyN76YxprJVMSSJUKbHBNeaJ1rYdKCZZxLQcHqbhIgzxPIgXNg0lgjBSsoM2mncW4Q2ZCc9L0r7z7WNrSqLkNuq0o31q2DoiIDSVnSgac9mHsXgrdLtfJlrf1GUVC_d6jtHR076tmvsrKb_0E1n41niFR0RtwbZWjt99bQ_l1xZJip-f1EvVyKK1gsnhWyH2KKbZ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18509132</pqid></control><display><type>article</type><title>L moment diagrams for censored observations</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Wiley-Blackwell AGU Digital Archive</source><source>EZB Electronic Journals Library</source><creator>Zafirakou‐Koulouris, Antigoni ; Vogel, Richard M. ; Craig, Scott M. ; Habermeier, Joerg</creator><creatorcontrib>Zafirakou‐Koulouris, Antigoni ; Vogel, Richard M. ; Craig, Scott M. ; Habermeier, Joerg</creatorcontrib><description>Observed data sets containing values above or below the analytical threshold of measuring equipment are referred to as censored. Such data are frequently encountered in quality and quantity monitoring applications of water, soil, and air samples. Most of the previous literature on the statistical analysis of censored data relates to the problems of moment, parameter, and quantile estimation methods. Such estimation methods usually assume an underlying probability distribution. Few goodness‐of‐fit methods exist for censored data. We introduce L moment diagrams for the evaluation of the goodness of fit of alternative distributional hypotheses for left‐censored data. Experiments with artificial censored data sets document the conditions under which L moment diagrams should be useful. Our approach, like Hosking's [1995] approach for right censoring, derived L moment diagrams for left‐censored observations from partial probability‐weighted moments.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/97WR03712</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><ispartof>Water resources research, 1998-05, Vol.34 (5), p.1241-1249</ispartof><rights>Copyright 1998 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3948-9328abc726daaca8b4d35669810ea944076c20c066039beb983d13b432866b773</citedby><cites>FETCH-LOGICAL-a3948-9328abc726daaca8b4d35669810ea944076c20c066039beb983d13b432866b773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F97WR03712$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F97WR03712$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11495,27903,27904,45553,45554,46446,46870</link.rule.ids></links><search><creatorcontrib>Zafirakou‐Koulouris, Antigoni</creatorcontrib><creatorcontrib>Vogel, Richard M.</creatorcontrib><creatorcontrib>Craig, Scott M.</creatorcontrib><creatorcontrib>Habermeier, Joerg</creatorcontrib><title>L moment diagrams for censored observations</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>Observed data sets containing values above or below the analytical threshold of measuring equipment are referred to as censored. Such data are frequently encountered in quality and quantity monitoring applications of water, soil, and air samples. Most of the previous literature on the statistical analysis of censored data relates to the problems of moment, parameter, and quantile estimation methods. Such estimation methods usually assume an underlying probability distribution. Few goodness‐of‐fit methods exist for censored data. We introduce L moment diagrams for the evaluation of the goodness of fit of alternative distributional hypotheses for left‐censored data. Experiments with artificial censored data sets document the conditions under which L moment diagrams should be useful. Our approach, like Hosking's [1995] approach for right censoring, derived L moment diagrams for left‐censored observations from partial probability‐weighted moments.</description><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoOKcH_0FPgkjdl6bNlxx16hSGwlA3vISkzaTaNjPp1P17K5XdPL2X53l5eQk5pnBOIZEjifMZMKTJDhlQmaYxSmS7ZACQspgyifvkIIQ3AJpmHAfkbBrVrrZNGxWlfvW6DtHS-Si3TXDeFpEzwfpP3ZauCYdkb6mrYI_-ckiebq4fx7fx9GFyN76YxprJVMSSJUKbHBNeaJ1rYdKCZZxLQcHqbhIgzxPIgXNg0lgjBSsoM2mncW4Q2ZCc9L0r7z7WNrSqLkNuq0o31q2DoiIDSVnSgac9mHsXgrdLtfJlrf1GUVC_d6jtHR076tmvsrKb_0E1n41niFR0RtwbZWjt99bQ_l1xZJip-f1EvVyKK1gsnhWyH2KKbZ0</recordid><startdate>199805</startdate><enddate>199805</enddate><creator>Zafirakou‐Koulouris, Antigoni</creator><creator>Vogel, Richard M.</creator><creator>Craig, Scott M.</creator><creator>Habermeier, Joerg</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>199805</creationdate><title>L moment diagrams for censored observations</title><author>Zafirakou‐Koulouris, Antigoni ; Vogel, Richard M. ; Craig, Scott M. ; Habermeier, Joerg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3948-9328abc726daaca8b4d35669810ea944076c20c066039beb983d13b432866b773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zafirakou‐Koulouris, Antigoni</creatorcontrib><creatorcontrib>Vogel, Richard M.</creatorcontrib><creatorcontrib>Craig, Scott M.</creatorcontrib><creatorcontrib>Habermeier, Joerg</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zafirakou‐Koulouris, Antigoni</au><au>Vogel, Richard M.</au><au>Craig, Scott M.</au><au>Habermeier, Joerg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>L moment diagrams for censored observations</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>1998-05</date><risdate>1998</risdate><volume>34</volume><issue>5</issue><spage>1241</spage><epage>1249</epage><pages>1241-1249</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Observed data sets containing values above or below the analytical threshold of measuring equipment are referred to as censored. Such data are frequently encountered in quality and quantity monitoring applications of water, soil, and air samples. Most of the previous literature on the statistical analysis of censored data relates to the problems of moment, parameter, and quantile estimation methods. Such estimation methods usually assume an underlying probability distribution. Few goodness‐of‐fit methods exist for censored data. We introduce L moment diagrams for the evaluation of the goodness of fit of alternative distributional hypotheses for left‐censored data. Experiments with artificial censored data sets document the conditions under which L moment diagrams should be useful. Our approach, like Hosking's [1995] approach for right censoring, derived L moment diagrams for left‐censored observations from partial probability‐weighted moments.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/97WR03712</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 1998-05, Vol.34 (5), p.1241-1249
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_18509132
source Wiley Online Library - AutoHoldings Journals; Wiley-Blackwell AGU Digital Archive; EZB Electronic Journals Library
title L moment diagrams for censored observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A30%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=L%20moment%20diagrams%20for%20censored%20observations&rft.jtitle=Water%20resources%20research&rft.au=Zafirakou%E2%80%90Koulouris,%20Antigoni&rft.date=1998-05&rft.volume=34&rft.issue=5&rft.spage=1241&rft.epage=1249&rft.pages=1241-1249&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/97WR03712&rft_dat=%3Cproquest_cross%3E18509132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18509132&rft_id=info:pmid/&rfr_iscdi=true