Statistical Detection of Movement Activities in a Human Brain by Moving Separation of Mixture Distributions
One of the most popular experimental techniques for investigation of brain activity is the so-called method of evoked potentials: the subject repeatedly makes some movements (by his/her finger), whereas brain activity and some auxiliary signals are recorded for further analysis. The key problem is t...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2016-10, Vol.218 (3), p.278-286 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 286 |
---|---|
container_issue | 3 |
container_start_page | 278 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 218 |
creator | Gorshenin, A. K. Korolev, V. Yu Korchagin, A. Yu Zakharova, T. V. Zeifman, A. I. |
description | One of the most popular experimental techniques for investigation of brain activity is the so-called method of evoked potentials: the subject repeatedly makes some movements (by his/her finger), whereas brain activity and some auxiliary signals are recorded for further analysis. The key problem is the detection of points in the myogram that correspond to the beginning of the movements. The more precisely the points are detected, the more successfully the magnetoencephalogram is processed aiming at the identification of sensors that are closest to the activity areas.
This paper proposes a statistical approach to this problem based on mixtures models that uses a specially modified method of moving separation of mixtures of probability distributions (MSMmethod) to detect the start points of the finger’s movements. We demonstrate the correctness of the new procedure and its advantages as compared with the method based on the notion of the myogram window variance. |
doi_str_mv | 10.1007/s10958-016-3029-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1850783704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A501598616</galeid><sourcerecordid>A501598616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6131-2c09b1ed9cf5e3467267732cec302146cc4ce7dcf7bda087031843909e682cfe3</originalsourceid><addsrcrecordid>eNp1kk1v1DAQhiMEEqXwA7hZ4gIHt5448cdxaYFWKkJi4Wx5vZPIJXEW26naf4-jRdBFi3ywPXqe0dh6q-o1sDNgTJ4nYLpVlIGgnNWawpPqBFrJqZK6fVrOTNaUc9k8r16kdMuKIxQ_qX6ss80-Ze_sQC4xo8t-CmTqyOfpDkcMmaxK6c5nj4n4QCy5mkcbyPtoy23zsHA-9GSNOxvtH9nf5zkiuSyto9_MSz29rJ51dkj46vd-Wn3_-OHbxRW9-fLp-mJ1Q50ADrR2TG8At9p1LfJGyFpIyWuHrrwMGuFc41BuXSc3W8uUZBxUwzXTKFTtOuSn1dt9312cfs6Yshl9cjgMNuA0JwOqZVJxyZqCvvkHvZ3mGMp0hVJMCQ3A_1K9HdD40E05Wrc0NauWQauVAFEoeoTqMWC0wxSw86V8wJ8d4cva4ujdUeHdgVCYjPe5t3NK5nr99ZCFPevilFLEzuyiH218MMDMkhizT4wpiTFLYgwUp947qbChx_joM_4r_QLS4sBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880869113</pqid></control><display><type>article</type><title>Statistical Detection of Movement Activities in a Human Brain by Moving Separation of Mixture Distributions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gorshenin, A. K. ; Korolev, V. Yu ; Korchagin, A. Yu ; Zakharova, T. V. ; Zeifman, A. I.</creator><creatorcontrib>Gorshenin, A. K. ; Korolev, V. Yu ; Korchagin, A. Yu ; Zakharova, T. V. ; Zeifman, A. I.</creatorcontrib><description>One of the most popular experimental techniques for investigation of brain activity is the so-called method of evoked potentials: the subject repeatedly makes some movements (by his/her finger), whereas brain activity and some auxiliary signals are recorded for further analysis. The key problem is the detection of points in the myogram that correspond to the beginning of the movements. The more precisely the points are detected, the more successfully the magnetoencephalogram is processed aiming at the identification of sensors that are closest to the activity areas.
This paper proposes a statistical approach to this problem based on mixtures models that uses a specially modified method of moving separation of mixtures of probability distributions (MSMmethod) to detect the start points of the finger’s movements. We demonstrate the correctness of the new procedure and its advantages as compared with the method based on the notion of the myogram window variance.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-016-3029-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Brain ; Evoked potentials ; Human motion ; Mathematics ; Mathematics and Statistics ; Motion perception ; Movement ; Neurophysiology ; Probability distributions ; Separation</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2016-10, Vol.218 (3), p.278-286</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6131-2c09b1ed9cf5e3467267732cec302146cc4ce7dcf7bda087031843909e682cfe3</citedby><cites>FETCH-LOGICAL-c6131-2c09b1ed9cf5e3467267732cec302146cc4ce7dcf7bda087031843909e682cfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-016-3029-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-016-3029-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Gorshenin, A. K.</creatorcontrib><creatorcontrib>Korolev, V. Yu</creatorcontrib><creatorcontrib>Korchagin, A. Yu</creatorcontrib><creatorcontrib>Zakharova, T. V.</creatorcontrib><creatorcontrib>Zeifman, A. I.</creatorcontrib><title>Statistical Detection of Movement Activities in a Human Brain by Moving Separation of Mixture Distributions</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>One of the most popular experimental techniques for investigation of brain activity is the so-called method of evoked potentials: the subject repeatedly makes some movements (by his/her finger), whereas brain activity and some auxiliary signals are recorded for further analysis. The key problem is the detection of points in the myogram that correspond to the beginning of the movements. The more precisely the points are detected, the more successfully the magnetoencephalogram is processed aiming at the identification of sensors that are closest to the activity areas.
This paper proposes a statistical approach to this problem based on mixtures models that uses a specially modified method of moving separation of mixtures of probability distributions (MSMmethod) to detect the start points of the finger’s movements. We demonstrate the correctness of the new procedure and its advantages as compared with the method based on the notion of the myogram window variance.</description><subject>Brain</subject><subject>Evoked potentials</subject><subject>Human motion</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Motion perception</subject><subject>Movement</subject><subject>Neurophysiology</subject><subject>Probability distributions</subject><subject>Separation</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kk1v1DAQhiMEEqXwA7hZ4gIHt5448cdxaYFWKkJi4Wx5vZPIJXEW26naf4-jRdBFi3ywPXqe0dh6q-o1sDNgTJ4nYLpVlIGgnNWawpPqBFrJqZK6fVrOTNaUc9k8r16kdMuKIxQ_qX6ss80-Ze_sQC4xo8t-CmTqyOfpDkcMmaxK6c5nj4n4QCy5mkcbyPtoy23zsHA-9GSNOxvtH9nf5zkiuSyto9_MSz29rJ51dkj46vd-Wn3_-OHbxRW9-fLp-mJ1Q50ADrR2TG8At9p1LfJGyFpIyWuHrrwMGuFc41BuXSc3W8uUZBxUwzXTKFTtOuSn1dt9312cfs6Yshl9cjgMNuA0JwOqZVJxyZqCvvkHvZ3mGMp0hVJMCQ3A_1K9HdD40E05Wrc0NauWQauVAFEoeoTqMWC0wxSw86V8wJ8d4cva4ujdUeHdgVCYjPe5t3NK5nr99ZCFPevilFLEzuyiH218MMDMkhizT4wpiTFLYgwUp947qbChx_joM_4r_QLS4sBU</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Gorshenin, A. K.</creator><creator>Korolev, V. Yu</creator><creator>Korchagin, A. Yu</creator><creator>Zakharova, T. V.</creator><creator>Zeifman, A. I.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TK</scope></search><sort><creationdate>20161001</creationdate><title>Statistical Detection of Movement Activities in a Human Brain by Moving Separation of Mixture Distributions</title><author>Gorshenin, A. K. ; Korolev, V. Yu ; Korchagin, A. Yu ; Zakharova, T. V. ; Zeifman, A. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6131-2c09b1ed9cf5e3467267732cec302146cc4ce7dcf7bda087031843909e682cfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Brain</topic><topic>Evoked potentials</topic><topic>Human motion</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Motion perception</topic><topic>Movement</topic><topic>Neurophysiology</topic><topic>Probability distributions</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorshenin, A. K.</creatorcontrib><creatorcontrib>Korolev, V. Yu</creatorcontrib><creatorcontrib>Korchagin, A. Yu</creatorcontrib><creatorcontrib>Zakharova, T. V.</creatorcontrib><creatorcontrib>Zeifman, A. I.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorshenin, A. K.</au><au>Korolev, V. Yu</au><au>Korchagin, A. Yu</au><au>Zakharova, T. V.</au><au>Zeifman, A. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Detection of Movement Activities in a Human Brain by Moving Separation of Mixture Distributions</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>218</volume><issue>3</issue><spage>278</spage><epage>286</epage><pages>278-286</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>One of the most popular experimental techniques for investigation of brain activity is the so-called method of evoked potentials: the subject repeatedly makes some movements (by his/her finger), whereas brain activity and some auxiliary signals are recorded for further analysis. The key problem is the detection of points in the myogram that correspond to the beginning of the movements. The more precisely the points are detected, the more successfully the magnetoencephalogram is processed aiming at the identification of sensors that are closest to the activity areas.
This paper proposes a statistical approach to this problem based on mixtures models that uses a specially modified method of moving separation of mixtures of probability distributions (MSMmethod) to detect the start points of the finger’s movements. We demonstrate the correctness of the new procedure and its advantages as compared with the method based on the notion of the myogram window variance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-016-3029-1</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2016-10, Vol.218 (3), p.278-286 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_miscellaneous_1850783704 |
source | SpringerLink Journals - AutoHoldings |
subjects | Brain Evoked potentials Human motion Mathematics Mathematics and Statistics Motion perception Movement Neurophysiology Probability distributions Separation |
title | Statistical Detection of Movement Activities in a Human Brain by Moving Separation of Mixture Distributions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A57%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Detection%20of%20Movement%20Activities%20in%20a%20Human%20Brain%20by%20Moving%20Separation%20of%20Mixture%20Distributions&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Gorshenin,%20A.%20K.&rft.date=2016-10-01&rft.volume=218&rft.issue=3&rft.spage=278&rft.epage=286&rft.pages=278-286&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-016-3029-1&rft_dat=%3Cgale_proqu%3EA501598616%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880869113&rft_id=info:pmid/&rft_galeid=A501598616&rfr_iscdi=true |