Statistical Detection of Movement Activities in a Human Brain by Moving Separation of Mixture Distributions

One of the most popular experimental techniques for investigation of brain activity is the so-called method of evoked potentials: the subject repeatedly makes some movements (by his/her finger), whereas brain activity and some auxiliary signals are recorded for further analysis. The key problem is t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2016-10, Vol.218 (3), p.278-286
Hauptverfasser: Gorshenin, A. K., Korolev, V. Yu, Korchagin, A. Yu, Zakharova, T. V., Zeifman, A. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 286
container_issue 3
container_start_page 278
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 218
creator Gorshenin, A. K.
Korolev, V. Yu
Korchagin, A. Yu
Zakharova, T. V.
Zeifman, A. I.
description One of the most popular experimental techniques for investigation of brain activity is the so-called method of evoked potentials: the subject repeatedly makes some movements (by his/her finger), whereas brain activity and some auxiliary signals are recorded for further analysis. The key problem is the detection of points in the myogram that correspond to the beginning of the movements. The more precisely the points are detected, the more successfully the magnetoencephalogram is processed aiming at the identification of sensors that are closest to the activity areas. This paper proposes a statistical approach to this problem based on mixtures models that uses a specially modified method of moving separation of mixtures of probability distributions (MSMmethod) to detect the start points of the finger’s movements. We demonstrate the correctness of the new procedure and its advantages as compared with the method based on the notion of the myogram window variance.
doi_str_mv 10.1007/s10958-016-3029-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1850783704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A501598616</galeid><sourcerecordid>A501598616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6131-2c09b1ed9cf5e3467267732cec302146cc4ce7dcf7bda087031843909e682cfe3</originalsourceid><addsrcrecordid>eNp1kk1v1DAQhiMEEqXwA7hZ4gIHt5448cdxaYFWKkJi4Wx5vZPIJXEW26naf4-jRdBFi3ywPXqe0dh6q-o1sDNgTJ4nYLpVlIGgnNWawpPqBFrJqZK6fVrOTNaUc9k8r16kdMuKIxQ_qX6ss80-Ze_sQC4xo8t-CmTqyOfpDkcMmaxK6c5nj4n4QCy5mkcbyPtoy23zsHA-9GSNOxvtH9nf5zkiuSyto9_MSz29rJ51dkj46vd-Wn3_-OHbxRW9-fLp-mJ1Q50ADrR2TG8At9p1LfJGyFpIyWuHrrwMGuFc41BuXSc3W8uUZBxUwzXTKFTtOuSn1dt9312cfs6Yshl9cjgMNuA0JwOqZVJxyZqCvvkHvZ3mGMp0hVJMCQ3A_1K9HdD40E05Wrc0NauWQauVAFEoeoTqMWC0wxSw86V8wJ8d4cva4ujdUeHdgVCYjPe5t3NK5nr99ZCFPevilFLEzuyiH218MMDMkhizT4wpiTFLYgwUp947qbChx_joM_4r_QLS4sBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880869113</pqid></control><display><type>article</type><title>Statistical Detection of Movement Activities in a Human Brain by Moving Separation of Mixture Distributions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gorshenin, A. K. ; Korolev, V. Yu ; Korchagin, A. Yu ; Zakharova, T. V. ; Zeifman, A. I.</creator><creatorcontrib>Gorshenin, A. K. ; Korolev, V. Yu ; Korchagin, A. Yu ; Zakharova, T. V. ; Zeifman, A. I.</creatorcontrib><description>One of the most popular experimental techniques for investigation of brain activity is the so-called method of evoked potentials: the subject repeatedly makes some movements (by his/her finger), whereas brain activity and some auxiliary signals are recorded for further analysis. The key problem is the detection of points in the myogram that correspond to the beginning of the movements. The more precisely the points are detected, the more successfully the magnetoencephalogram is processed aiming at the identification of sensors that are closest to the activity areas. This paper proposes a statistical approach to this problem based on mixtures models that uses a specially modified method of moving separation of mixtures of probability distributions (MSMmethod) to detect the start points of the finger’s movements. We demonstrate the correctness of the new procedure and its advantages as compared with the method based on the notion of the myogram window variance.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-016-3029-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Brain ; Evoked potentials ; Human motion ; Mathematics ; Mathematics and Statistics ; Motion perception ; Movement ; Neurophysiology ; Probability distributions ; Separation</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2016-10, Vol.218 (3), p.278-286</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6131-2c09b1ed9cf5e3467267732cec302146cc4ce7dcf7bda087031843909e682cfe3</citedby><cites>FETCH-LOGICAL-c6131-2c09b1ed9cf5e3467267732cec302146cc4ce7dcf7bda087031843909e682cfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-016-3029-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-016-3029-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Gorshenin, A. K.</creatorcontrib><creatorcontrib>Korolev, V. Yu</creatorcontrib><creatorcontrib>Korchagin, A. Yu</creatorcontrib><creatorcontrib>Zakharova, T. V.</creatorcontrib><creatorcontrib>Zeifman, A. I.</creatorcontrib><title>Statistical Detection of Movement Activities in a Human Brain by Moving Separation of Mixture Distributions</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>One of the most popular experimental techniques for investigation of brain activity is the so-called method of evoked potentials: the subject repeatedly makes some movements (by his/her finger), whereas brain activity and some auxiliary signals are recorded for further analysis. The key problem is the detection of points in the myogram that correspond to the beginning of the movements. The more precisely the points are detected, the more successfully the magnetoencephalogram is processed aiming at the identification of sensors that are closest to the activity areas. This paper proposes a statistical approach to this problem based on mixtures models that uses a specially modified method of moving separation of mixtures of probability distributions (MSMmethod) to detect the start points of the finger’s movements. We demonstrate the correctness of the new procedure and its advantages as compared with the method based on the notion of the myogram window variance.</description><subject>Brain</subject><subject>Evoked potentials</subject><subject>Human motion</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Motion perception</subject><subject>Movement</subject><subject>Neurophysiology</subject><subject>Probability distributions</subject><subject>Separation</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kk1v1DAQhiMEEqXwA7hZ4gIHt5448cdxaYFWKkJi4Wx5vZPIJXEW26naf4-jRdBFi3ywPXqe0dh6q-o1sDNgTJ4nYLpVlIGgnNWawpPqBFrJqZK6fVrOTNaUc9k8r16kdMuKIxQ_qX6ss80-Ze_sQC4xo8t-CmTqyOfpDkcMmaxK6c5nj4n4QCy5mkcbyPtoy23zsHA-9GSNOxvtH9nf5zkiuSyto9_MSz29rJ51dkj46vd-Wn3_-OHbxRW9-fLp-mJ1Q50ADrR2TG8At9p1LfJGyFpIyWuHrrwMGuFc41BuXSc3W8uUZBxUwzXTKFTtOuSn1dt9312cfs6Yshl9cjgMNuA0JwOqZVJxyZqCvvkHvZ3mGMp0hVJMCQ3A_1K9HdD40E05Wrc0NauWQauVAFEoeoTqMWC0wxSw86V8wJ8d4cva4ujdUeHdgVCYjPe5t3NK5nr99ZCFPevilFLEzuyiH218MMDMkhizT4wpiTFLYgwUp947qbChx_joM_4r_QLS4sBU</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Gorshenin, A. K.</creator><creator>Korolev, V. Yu</creator><creator>Korchagin, A. Yu</creator><creator>Zakharova, T. V.</creator><creator>Zeifman, A. I.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TK</scope></search><sort><creationdate>20161001</creationdate><title>Statistical Detection of Movement Activities in a Human Brain by Moving Separation of Mixture Distributions</title><author>Gorshenin, A. K. ; Korolev, V. Yu ; Korchagin, A. Yu ; Zakharova, T. V. ; Zeifman, A. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6131-2c09b1ed9cf5e3467267732cec302146cc4ce7dcf7bda087031843909e682cfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Brain</topic><topic>Evoked potentials</topic><topic>Human motion</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Motion perception</topic><topic>Movement</topic><topic>Neurophysiology</topic><topic>Probability distributions</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorshenin, A. K.</creatorcontrib><creatorcontrib>Korolev, V. Yu</creatorcontrib><creatorcontrib>Korchagin, A. Yu</creatorcontrib><creatorcontrib>Zakharova, T. V.</creatorcontrib><creatorcontrib>Zeifman, A. I.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorshenin, A. K.</au><au>Korolev, V. Yu</au><au>Korchagin, A. Yu</au><au>Zakharova, T. V.</au><au>Zeifman, A. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Detection of Movement Activities in a Human Brain by Moving Separation of Mixture Distributions</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>218</volume><issue>3</issue><spage>278</spage><epage>286</epage><pages>278-286</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>One of the most popular experimental techniques for investigation of brain activity is the so-called method of evoked potentials: the subject repeatedly makes some movements (by his/her finger), whereas brain activity and some auxiliary signals are recorded for further analysis. The key problem is the detection of points in the myogram that correspond to the beginning of the movements. The more precisely the points are detected, the more successfully the magnetoencephalogram is processed aiming at the identification of sensors that are closest to the activity areas. This paper proposes a statistical approach to this problem based on mixtures models that uses a specially modified method of moving separation of mixtures of probability distributions (MSMmethod) to detect the start points of the finger’s movements. We demonstrate the correctness of the new procedure and its advantages as compared with the method based on the notion of the myogram window variance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-016-3029-1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2016-10, Vol.218 (3), p.278-286
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_miscellaneous_1850783704
source SpringerLink Journals - AutoHoldings
subjects Brain
Evoked potentials
Human motion
Mathematics
Mathematics and Statistics
Motion perception
Movement
Neurophysiology
Probability distributions
Separation
title Statistical Detection of Movement Activities in a Human Brain by Moving Separation of Mixture Distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A57%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Detection%20of%20Movement%20Activities%20in%20a%20Human%20Brain%20by%20Moving%20Separation%20of%20Mixture%20Distributions&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Gorshenin,%20A.%20K.&rft.date=2016-10-01&rft.volume=218&rft.issue=3&rft.spage=278&rft.epage=286&rft.pages=278-286&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-016-3029-1&rft_dat=%3Cgale_proqu%3EA501598616%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880869113&rft_id=info:pmid/&rft_galeid=A501598616&rfr_iscdi=true