Microbiome Networks: A Systems Framework for Identifying Candidate Microbial Assemblages for Disease Management
Network models of soil and plant microbiomes provide new opportunities for enhancing disease management, but also challenges for interpretation. We present a framework for interpreting microbiome networks, illustrating how observed network structures can be used to generate testable hypotheses about...
Gespeichert in:
Veröffentlicht in: | Phytopathology 2016-10, Vol.106 (10), p.1083-1096 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1096 |
---|---|
container_issue | 10 |
container_start_page | 1083 |
container_title | Phytopathology |
container_volume | 106 |
creator | Poudel, R Jumpponen, A Schlatter, D C Paulitz, T C Gardener, B B McSpadden Kinkel, L L Garrett, K A |
description | Network models of soil and plant microbiomes provide new opportunities for enhancing disease management, but also challenges for interpretation. We present a framework for interpreting microbiome networks, illustrating how observed network structures can be used to generate testable hypotheses about candidate microbes affecting plant health. The framework includes four types of network analyses. "General network analysis" identifies candidate taxa for maintaining an existing microbial community. "Host-focused analysis" includes a node representing a plant response such as yield, identifying taxa with direct or indirect associations with that node. "Pathogen-focused analysis" identifies taxa with direct or indirect associations with taxa known a priori as pathogens. "Disease-focused analysis" identifies taxa associated with disease. Positive direct or indirect associations with desirable outcomes, or negative associations with undesirable outcomes, indicate candidate taxa. Network analysis provides characterization not only of taxa with direct associations with important outcomes such as disease suppression, biofertilization, or expression of plant host resistance, but also taxa with indirect associations via their association with other key taxa. We illustrate the interpretation of network structure with analyses of microbiomes in the oak phyllosphere, and in wheat rhizosphere and bulk soil associated with the presence or absence of infection by Rhizoctonia solani. |
doi_str_mv | 10.1094/PHYTO-02-16-0058-FI |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1850777580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1850777580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-e731e2b431294073d2d32286de2318f35e94c58108e87ee22d88ded1c53277e93</originalsourceid><addsrcrecordid>eNqNkctKAzEUhoMotl6eQJAs3URzm0nirlTHFqoVrKCrkE7OlNG51MkU6ds7veja1YHD9_-Hw4fQBaPXjBp58zx6n00J5YTFhNJIk2R8gPrMSEFUrOUh6lMqGDHSvPXQSQgflFKlo_gY9biSmsc86qP6MU-bep7XJeAnaL_r5jPc4gF-WYcWyoCTxpWw2eKsbvDYQ9Xm2TqvFnjoKp971wLeV7gCD0KAcl64BYQtf5cHcKEjXNXtyi58ho4yVwQ4389T9Jrcz4YjMpk-jIeDCUmlEC0BJRjwuRSMG0mV8NwLznXsgQumMxGBkWmkGdWgFQDnXmsPnqWR4EqBEafoate7bOqvFYTWlnlIoShcBfUqWKYjqpSKNP0HymMljDGsQ8UO7R4OoYHMLpu8dM3aMmo3UuxWiqXcsthupNhk3KUu9wdW8xL8X-bXgvgByuKIqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826739991</pqid></control><display><type>article</type><title>Microbiome Networks: A Systems Framework for Identifying Candidate Microbial Assemblages for Disease Management</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>American Phytopathological Society Journal Back Issues</source><creator>Poudel, R ; Jumpponen, A ; Schlatter, D C ; Paulitz, T C ; Gardener, B B McSpadden ; Kinkel, L L ; Garrett, K A</creator><creatorcontrib>Poudel, R ; Jumpponen, A ; Schlatter, D C ; Paulitz, T C ; Gardener, B B McSpadden ; Kinkel, L L ; Garrett, K A</creatorcontrib><description>Network models of soil and plant microbiomes provide new opportunities for enhancing disease management, but also challenges for interpretation. We present a framework for interpreting microbiome networks, illustrating how observed network structures can be used to generate testable hypotheses about candidate microbes affecting plant health. The framework includes four types of network analyses. "General network analysis" identifies candidate taxa for maintaining an existing microbial community. "Host-focused analysis" includes a node representing a plant response such as yield, identifying taxa with direct or indirect associations with that node. "Pathogen-focused analysis" identifies taxa with direct or indirect associations with taxa known a priori as pathogens. "Disease-focused analysis" identifies taxa associated with disease. Positive direct or indirect associations with desirable outcomes, or negative associations with undesirable outcomes, indicate candidate taxa. Network analysis provides characterization not only of taxa with direct associations with important outcomes such as disease suppression, biofertilization, or expression of plant host resistance, but also taxa with indirect associations via their association with other key taxa. We illustrate the interpretation of network structure with analyses of microbiomes in the oak phyllosphere, and in wheat rhizosphere and bulk soil associated with the presence or absence of infection by Rhizoctonia solani.</description><identifier>ISSN: 0031-949X</identifier><identifier>EISSN: 1943-7684</identifier><identifier>DOI: 10.1094/PHYTO-02-16-0058-FI</identifier><identifier>PMID: 27482625</identifier><language>eng</language><publisher>United States</publisher><subject>Biological Control Agents ; Host-Pathogen Interactions ; Microbiota ; Plant Diseases - microbiology ; Plant Diseases - prevention & control ; Quercus - microbiology ; Rhizoctonia - physiology ; Rhizoctonia solani ; Rhizosphere ; Soil ; Soil Microbiology ; Triticum - microbiology ; Triticum aestivum</subject><ispartof>Phytopathology, 2016-10, Vol.106 (10), p.1083-1096</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-e731e2b431294073d2d32286de2318f35e94c58108e87ee22d88ded1c53277e93</citedby><cites>FETCH-LOGICAL-c433t-e731e2b431294073d2d32286de2318f35e94c58108e87ee22d88ded1c53277e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3711,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27482625$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poudel, R</creatorcontrib><creatorcontrib>Jumpponen, A</creatorcontrib><creatorcontrib>Schlatter, D C</creatorcontrib><creatorcontrib>Paulitz, T C</creatorcontrib><creatorcontrib>Gardener, B B McSpadden</creatorcontrib><creatorcontrib>Kinkel, L L</creatorcontrib><creatorcontrib>Garrett, K A</creatorcontrib><title>Microbiome Networks: A Systems Framework for Identifying Candidate Microbial Assemblages for Disease Management</title><title>Phytopathology</title><addtitle>Phytopathology</addtitle><description>Network models of soil and plant microbiomes provide new opportunities for enhancing disease management, but also challenges for interpretation. We present a framework for interpreting microbiome networks, illustrating how observed network structures can be used to generate testable hypotheses about candidate microbes affecting plant health. The framework includes four types of network analyses. "General network analysis" identifies candidate taxa for maintaining an existing microbial community. "Host-focused analysis" includes a node representing a plant response such as yield, identifying taxa with direct or indirect associations with that node. "Pathogen-focused analysis" identifies taxa with direct or indirect associations with taxa known a priori as pathogens. "Disease-focused analysis" identifies taxa associated with disease. Positive direct or indirect associations with desirable outcomes, or negative associations with undesirable outcomes, indicate candidate taxa. Network analysis provides characterization not only of taxa with direct associations with important outcomes such as disease suppression, biofertilization, or expression of plant host resistance, but also taxa with indirect associations via their association with other key taxa. We illustrate the interpretation of network structure with analyses of microbiomes in the oak phyllosphere, and in wheat rhizosphere and bulk soil associated with the presence or absence of infection by Rhizoctonia solani.</description><subject>Biological Control Agents</subject><subject>Host-Pathogen Interactions</subject><subject>Microbiota</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Diseases - prevention & control</subject><subject>Quercus - microbiology</subject><subject>Rhizoctonia - physiology</subject><subject>Rhizoctonia solani</subject><subject>Rhizosphere</subject><subject>Soil</subject><subject>Soil Microbiology</subject><subject>Triticum - microbiology</subject><subject>Triticum aestivum</subject><issn>0031-949X</issn><issn>1943-7684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctKAzEUhoMotl6eQJAs3URzm0nirlTHFqoVrKCrkE7OlNG51MkU6ds7veja1YHD9_-Hw4fQBaPXjBp58zx6n00J5YTFhNJIk2R8gPrMSEFUrOUh6lMqGDHSvPXQSQgflFKlo_gY9biSmsc86qP6MU-bep7XJeAnaL_r5jPc4gF-WYcWyoCTxpWw2eKsbvDYQ9Xm2TqvFnjoKp971wLeV7gCD0KAcl64BYQtf5cHcKEjXNXtyi58ho4yVwQ4389T9Jrcz4YjMpk-jIeDCUmlEC0BJRjwuRSMG0mV8NwLznXsgQumMxGBkWmkGdWgFQDnXmsPnqWR4EqBEafoate7bOqvFYTWlnlIoShcBfUqWKYjqpSKNP0HymMljDGsQ8UO7R4OoYHMLpu8dM3aMmo3UuxWiqXcsthupNhk3KUu9wdW8xL8X-bXgvgByuKIqg</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Poudel, R</creator><creator>Jumpponen, A</creator><creator>Schlatter, D C</creator><creator>Paulitz, T C</creator><creator>Gardener, B B McSpadden</creator><creator>Kinkel, L L</creator><creator>Garrett, K A</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201610</creationdate><title>Microbiome Networks: A Systems Framework for Identifying Candidate Microbial Assemblages for Disease Management</title><author>Poudel, R ; Jumpponen, A ; Schlatter, D C ; Paulitz, T C ; Gardener, B B McSpadden ; Kinkel, L L ; Garrett, K A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-e731e2b431294073d2d32286de2318f35e94c58108e87ee22d88ded1c53277e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biological Control Agents</topic><topic>Host-Pathogen Interactions</topic><topic>Microbiota</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Diseases - prevention & control</topic><topic>Quercus - microbiology</topic><topic>Rhizoctonia - physiology</topic><topic>Rhizoctonia solani</topic><topic>Rhizosphere</topic><topic>Soil</topic><topic>Soil Microbiology</topic><topic>Triticum - microbiology</topic><topic>Triticum aestivum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poudel, R</creatorcontrib><creatorcontrib>Jumpponen, A</creatorcontrib><creatorcontrib>Schlatter, D C</creatorcontrib><creatorcontrib>Paulitz, T C</creatorcontrib><creatorcontrib>Gardener, B B McSpadden</creatorcontrib><creatorcontrib>Kinkel, L L</creatorcontrib><creatorcontrib>Garrett, K A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Phytopathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poudel, R</au><au>Jumpponen, A</au><au>Schlatter, D C</au><au>Paulitz, T C</au><au>Gardener, B B McSpadden</au><au>Kinkel, L L</au><au>Garrett, K A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbiome Networks: A Systems Framework for Identifying Candidate Microbial Assemblages for Disease Management</atitle><jtitle>Phytopathology</jtitle><addtitle>Phytopathology</addtitle><date>2016-10</date><risdate>2016</risdate><volume>106</volume><issue>10</issue><spage>1083</spage><epage>1096</epage><pages>1083-1096</pages><issn>0031-949X</issn><eissn>1943-7684</eissn><abstract>Network models of soil and plant microbiomes provide new opportunities for enhancing disease management, but also challenges for interpretation. We present a framework for interpreting microbiome networks, illustrating how observed network structures can be used to generate testable hypotheses about candidate microbes affecting plant health. The framework includes four types of network analyses. "General network analysis" identifies candidate taxa for maintaining an existing microbial community. "Host-focused analysis" includes a node representing a plant response such as yield, identifying taxa with direct or indirect associations with that node. "Pathogen-focused analysis" identifies taxa with direct or indirect associations with taxa known a priori as pathogens. "Disease-focused analysis" identifies taxa associated with disease. Positive direct or indirect associations with desirable outcomes, or negative associations with undesirable outcomes, indicate candidate taxa. Network analysis provides characterization not only of taxa with direct associations with important outcomes such as disease suppression, biofertilization, or expression of plant host resistance, but also taxa with indirect associations via their association with other key taxa. We illustrate the interpretation of network structure with analyses of microbiomes in the oak phyllosphere, and in wheat rhizosphere and bulk soil associated with the presence or absence of infection by Rhizoctonia solani.</abstract><cop>United States</cop><pmid>27482625</pmid><doi>10.1094/PHYTO-02-16-0058-FI</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-949X |
ispartof | Phytopathology, 2016-10, Vol.106 (10), p.1083-1096 |
issn | 0031-949X 1943-7684 |
language | eng |
recordid | cdi_proquest_miscellaneous_1850777580 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; American Phytopathological Society Journal Back Issues |
subjects | Biological Control Agents Host-Pathogen Interactions Microbiota Plant Diseases - microbiology Plant Diseases - prevention & control Quercus - microbiology Rhizoctonia - physiology Rhizoctonia solani Rhizosphere Soil Soil Microbiology Triticum - microbiology Triticum aestivum |
title | Microbiome Networks: A Systems Framework for Identifying Candidate Microbial Assemblages for Disease Management |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbiome%20Networks:%20A%20Systems%20Framework%20for%20Identifying%20Candidate%20Microbial%20Assemblages%20for%20Disease%20Management&rft.jtitle=Phytopathology&rft.au=Poudel,%20R&rft.date=2016-10&rft.volume=106&rft.issue=10&rft.spage=1083&rft.epage=1096&rft.pages=1083-1096&rft.issn=0031-949X&rft.eissn=1943-7684&rft_id=info:doi/10.1094/PHYTO-02-16-0058-FI&rft_dat=%3Cproquest_cross%3E1850777580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826739991&rft_id=info:pmid/27482625&rfr_iscdi=true |