Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae

Mutations in the Senataxin gene, SETX are known to cause the neurodegenerative disorders, ataxia with oculomotor apraxia type 2 (AOA2), and amyotrophic lateral sclerosis 4 (ALS4). However, the mechanism underlying disease pathogenesis is still unclear. The Senataxin N‐terminal protein‐interaction an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2016-11, Vol.283 (22), p.4056-4083
Hauptverfasser: Sariki, Santhosh Kumar, Sahu, Pushpendra Kumar, Golla, Upendarrao, Singh, Vikash, Azad, Gajendra Kumar, Tomar, Raghuvir S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4083
container_issue 22
container_start_page 4056
container_title The FEBS journal
container_volume 283
creator Sariki, Santhosh Kumar
Sahu, Pushpendra Kumar
Golla, Upendarrao
Singh, Vikash
Azad, Gajendra Kumar
Tomar, Raghuvir S.
description Mutations in the Senataxin gene, SETX are known to cause the neurodegenerative disorders, ataxia with oculomotor apraxia type 2 (AOA2), and amyotrophic lateral sclerosis 4 (ALS4). However, the mechanism underlying disease pathogenesis is still unclear. The Senataxin N‐terminal protein‐interaction and C‐terminal RNA/DNA helicase domains are conserved in the Saccharomyces cerevisiae homolog, Sen1p. Using genome‐wide expression analysis, we first show alterations in key cellular pathways such as: redox, unfolded protein response, and TOR in the yeast sen1 ΔN mutant (N‐terminal truncation). This mutant exhibited growth defects on nonfermentable carbon sources, was sensitive to oxidative stress, and showed severe loss of mitochondrial DNA. The growth defect could be partially rescued upon supplementation with reducing agents and antioxidants. Furthermore, the mutant showed higher levels of reactive oxygen species, lower UPR activity, and alterations in mitochondrial membrane potential, increase in vacuole acidity, free calcium ions in the cytosol, and resistance to rapamycin treatment. Notably, the sen1 ∆N mutant showed increased cell death and shortened chronological life span. Given the strong similarity of the yeast and human Sen1 proteins, our study thus provides a mechanism for the progressive neurological disorders associated with mutations in human senataxin. Mutations in the gene encoding senataxin are associated with neurodegenerative disorders, but the mechanism by which mutant senataxin contributes to neurodegeneration is unclear. To shed light on this issue, Tomar et al. investigated the functional effects of mutations in Sen1, the yeast orthologue of senataxin. Loss of the conserved N‐terminal domain of Sen1 deregulated ER, lipid and redox homeostasis; modulated the TOR signalling pathway and autophagy; induced mitochondrial and peroxisomal dysfunction; increased cell death and shortened the chronological life span. These results suggest that senataxin might have a key role in cellular homeostasis that underpins its function in neurodegeneration.
doi_str_mv 10.1111/febs.13917
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1850773058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4266276741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3907-9f5a55ba1c2f0e13b0066e6184a41d60f080d187a0e9f8369060408527cefbb63</originalsourceid><addsrcrecordid>eNqNkc1u1DAURiMEoqWw4QGQJTYIzRR7HP8toWoLUqVKtEjsohvneuIqiQc7mXbeiwes0yldsEB4Y-v66Oi7-oriLaPHLJ9PDut0zLhh6llxyFS5WpZS6OdP7_LnQfEqpRtKuSiNeVkcrJRimlN1WPy-woEtyNgiaUMfurAmwZF26mEg-QtGuPPDgvhEbPSjt9ARFyKx2HUkTXHrt3kytjFM65ZEXE8djD4MsyRiE-5mK4Y0QvJpQXo_BtuGoYl-Fk2DneEFgaF5iHB9-Z1sYGxvYUd8DgDWthBDv7OYA2DErU8e8HXxwkGX8M3jfVT8ODu9Pvm6vLg8_3by-WJpuaFqaZwAIWpgduUoMl5TKiVKpksoWSOpo5o2TCugaJzm0lBJS6rFSll0dS35UfFh793E8GvCNFa9T_PqMGCYUsW0oEpxKvR_oFxwZYQyGX3_F3oTpjjkRTJVlloxKUWmPu4pG0NKEV21ib6HuKsYrebaq7n26qH2DL97VE51j80T-qfnDLA9cOs73P1DVZ2dfrnaS-8B1Ue5kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844871665</pqid></control><display><type>article</type><title>Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Sariki, Santhosh Kumar ; Sahu, Pushpendra Kumar ; Golla, Upendarrao ; Singh, Vikash ; Azad, Gajendra Kumar ; Tomar, Raghuvir S.</creator><creatorcontrib>Sariki, Santhosh Kumar ; Sahu, Pushpendra Kumar ; Golla, Upendarrao ; Singh, Vikash ; Azad, Gajendra Kumar ; Tomar, Raghuvir S.</creatorcontrib><description>Mutations in the Senataxin gene, SETX are known to cause the neurodegenerative disorders, ataxia with oculomotor apraxia type 2 (AOA2), and amyotrophic lateral sclerosis 4 (ALS4). However, the mechanism underlying disease pathogenesis is still unclear. The Senataxin N‐terminal protein‐interaction and C‐terminal RNA/DNA helicase domains are conserved in the Saccharomyces cerevisiae homolog, Sen1p. Using genome‐wide expression analysis, we first show alterations in key cellular pathways such as: redox, unfolded protein response, and TOR in the yeast sen1 ΔN mutant (N‐terminal truncation). This mutant exhibited growth defects on nonfermentable carbon sources, was sensitive to oxidative stress, and showed severe loss of mitochondrial DNA. The growth defect could be partially rescued upon supplementation with reducing agents and antioxidants. Furthermore, the mutant showed higher levels of reactive oxygen species, lower UPR activity, and alterations in mitochondrial membrane potential, increase in vacuole acidity, free calcium ions in the cytosol, and resistance to rapamycin treatment. Notably, the sen1 ∆N mutant showed increased cell death and shortened chronological life span. Given the strong similarity of the yeast and human Sen1 proteins, our study thus provides a mechanism for the progressive neurological disorders associated with mutations in human senataxin. Mutations in the gene encoding senataxin are associated with neurodegenerative disorders, but the mechanism by which mutant senataxin contributes to neurodegeneration is unclear. To shed light on this issue, Tomar et al. investigated the functional effects of mutations in Sen1, the yeast orthologue of senataxin. Loss of the conserved N‐terminal domain of Sen1 deregulated ER, lipid and redox homeostasis; modulated the TOR signalling pathway and autophagy; induced mitochondrial and peroxisomal dysfunction; increased cell death and shortened the chronological life span. These results suggest that senataxin might have a key role in cellular homeostasis that underpins its function in neurodegeneration.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.13917</identifier><identifier>PMID: 27718307</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>apoptosis ; Autophagy - genetics ; Cardiolipins - biosynthesis ; Cellular Senescence - genetics ; chronological aging ; DNA Helicases - genetics ; DNA Helicases - metabolism ; Gene Expression Profiling - methods ; Gene Expression Regulation, Fungal ; Gene Regulatory Networks ; Homeostasis - genetics ; Humans ; Immunoblotting ; Membrane Potential, Mitochondrial - genetics ; Microbial Viability - genetics ; Microscopy, Fluorescence ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondrial DNA ; Models, Genetic ; Mutation ; Oxidation-Reduction ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; reactive oxygen species ; Reverse Transcriptase Polymerase Chain Reaction ; RNA Helicases - genetics ; RNA Helicases - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; senataxin ; Signal Transduction - genetics ; unfolded protein response ; Unfolded Protein Response - genetics ; Yeast</subject><ispartof>The FEBS journal, 2016-11, Vol.283 (22), p.4056-4083</ispartof><rights>2016 Federation of European Biochemical Societies</rights><rights>2016 Federation of European Biochemical Societies.</rights><rights>Copyright © 2016 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3907-9f5a55ba1c2f0e13b0066e6184a41d60f080d187a0e9f8369060408527cefbb63</citedby><cites>FETCH-LOGICAL-c3907-9f5a55ba1c2f0e13b0066e6184a41d60f080d187a0e9f8369060408527cefbb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.13917$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.13917$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27718307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sariki, Santhosh Kumar</creatorcontrib><creatorcontrib>Sahu, Pushpendra Kumar</creatorcontrib><creatorcontrib>Golla, Upendarrao</creatorcontrib><creatorcontrib>Singh, Vikash</creatorcontrib><creatorcontrib>Azad, Gajendra Kumar</creatorcontrib><creatorcontrib>Tomar, Raghuvir S.</creatorcontrib><title>Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Mutations in the Senataxin gene, SETX are known to cause the neurodegenerative disorders, ataxia with oculomotor apraxia type 2 (AOA2), and amyotrophic lateral sclerosis 4 (ALS4). However, the mechanism underlying disease pathogenesis is still unclear. The Senataxin N‐terminal protein‐interaction and C‐terminal RNA/DNA helicase domains are conserved in the Saccharomyces cerevisiae homolog, Sen1p. Using genome‐wide expression analysis, we first show alterations in key cellular pathways such as: redox, unfolded protein response, and TOR in the yeast sen1 ΔN mutant (N‐terminal truncation). This mutant exhibited growth defects on nonfermentable carbon sources, was sensitive to oxidative stress, and showed severe loss of mitochondrial DNA. The growth defect could be partially rescued upon supplementation with reducing agents and antioxidants. Furthermore, the mutant showed higher levels of reactive oxygen species, lower UPR activity, and alterations in mitochondrial membrane potential, increase in vacuole acidity, free calcium ions in the cytosol, and resistance to rapamycin treatment. Notably, the sen1 ∆N mutant showed increased cell death and shortened chronological life span. Given the strong similarity of the yeast and human Sen1 proteins, our study thus provides a mechanism for the progressive neurological disorders associated with mutations in human senataxin. Mutations in the gene encoding senataxin are associated with neurodegenerative disorders, but the mechanism by which mutant senataxin contributes to neurodegeneration is unclear. To shed light on this issue, Tomar et al. investigated the functional effects of mutations in Sen1, the yeast orthologue of senataxin. Loss of the conserved N‐terminal domain of Sen1 deregulated ER, lipid and redox homeostasis; modulated the TOR signalling pathway and autophagy; induced mitochondrial and peroxisomal dysfunction; increased cell death and shortened the chronological life span. These results suggest that senataxin might have a key role in cellular homeostasis that underpins its function in neurodegeneration.</description><subject>apoptosis</subject><subject>Autophagy - genetics</subject><subject>Cardiolipins - biosynthesis</subject><subject>Cellular Senescence - genetics</subject><subject>chronological aging</subject><subject>DNA Helicases - genetics</subject><subject>DNA Helicases - metabolism</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene Regulatory Networks</subject><subject>Homeostasis - genetics</subject><subject>Humans</subject><subject>Immunoblotting</subject><subject>Membrane Potential, Mitochondrial - genetics</subject><subject>Microbial Viability - genetics</subject><subject>Microscopy, Fluorescence</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Oxidation-Reduction</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>reactive oxygen species</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA Helicases - genetics</subject><subject>RNA Helicases - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>senataxin</subject><subject>Signal Transduction - genetics</subject><subject>unfolded protein response</subject><subject>Unfolded Protein Response - genetics</subject><subject>Yeast</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAURiMEoqWw4QGQJTYIzRR7HP8toWoLUqVKtEjsohvneuIqiQc7mXbeiwes0yldsEB4Y-v66Oi7-oriLaPHLJ9PDut0zLhh6llxyFS5WpZS6OdP7_LnQfEqpRtKuSiNeVkcrJRimlN1WPy-woEtyNgiaUMfurAmwZF26mEg-QtGuPPDgvhEbPSjt9ARFyKx2HUkTXHrt3kytjFM65ZEXE8djD4MsyRiE-5mK4Y0QvJpQXo_BtuGoYl-Fk2DneEFgaF5iHB9-Z1sYGxvYUd8DgDWthBDv7OYA2DErU8e8HXxwkGX8M3jfVT8ODu9Pvm6vLg8_3by-WJpuaFqaZwAIWpgduUoMl5TKiVKpksoWSOpo5o2TCugaJzm0lBJS6rFSll0dS35UfFh793E8GvCNFa9T_PqMGCYUsW0oEpxKvR_oFxwZYQyGX3_F3oTpjjkRTJVlloxKUWmPu4pG0NKEV21ib6HuKsYrebaq7n26qH2DL97VE51j80T-qfnDLA9cOs73P1DVZ2dfrnaS-8B1Ue5kA</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Sariki, Santhosh Kumar</creator><creator>Sahu, Pushpendra Kumar</creator><creator>Golla, Upendarrao</creator><creator>Singh, Vikash</creator><creator>Azad, Gajendra Kumar</creator><creator>Tomar, Raghuvir S.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201611</creationdate><title>Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae</title><author>Sariki, Santhosh Kumar ; Sahu, Pushpendra Kumar ; Golla, Upendarrao ; Singh, Vikash ; Azad, Gajendra Kumar ; Tomar, Raghuvir S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3907-9f5a55ba1c2f0e13b0066e6184a41d60f080d187a0e9f8369060408527cefbb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>apoptosis</topic><topic>Autophagy - genetics</topic><topic>Cardiolipins - biosynthesis</topic><topic>Cellular Senescence - genetics</topic><topic>chronological aging</topic><topic>DNA Helicases - genetics</topic><topic>DNA Helicases - metabolism</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene Regulatory Networks</topic><topic>Homeostasis - genetics</topic><topic>Humans</topic><topic>Immunoblotting</topic><topic>Membrane Potential, Mitochondrial - genetics</topic><topic>Microbial Viability - genetics</topic><topic>Microscopy, Fluorescence</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Oxidation-Reduction</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>reactive oxygen species</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA Helicases - genetics</topic><topic>RNA Helicases - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>senataxin</topic><topic>Signal Transduction - genetics</topic><topic>unfolded protein response</topic><topic>Unfolded Protein Response - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sariki, Santhosh Kumar</creatorcontrib><creatorcontrib>Sahu, Pushpendra Kumar</creatorcontrib><creatorcontrib>Golla, Upendarrao</creatorcontrib><creatorcontrib>Singh, Vikash</creatorcontrib><creatorcontrib>Azad, Gajendra Kumar</creatorcontrib><creatorcontrib>Tomar, Raghuvir S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sariki, Santhosh Kumar</au><au>Sahu, Pushpendra Kumar</au><au>Golla, Upendarrao</au><au>Singh, Vikash</au><au>Azad, Gajendra Kumar</au><au>Tomar, Raghuvir S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2016-11</date><risdate>2016</risdate><volume>283</volume><issue>22</issue><spage>4056</spage><epage>4083</epage><pages>4056-4083</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Mutations in the Senataxin gene, SETX are known to cause the neurodegenerative disorders, ataxia with oculomotor apraxia type 2 (AOA2), and amyotrophic lateral sclerosis 4 (ALS4). However, the mechanism underlying disease pathogenesis is still unclear. The Senataxin N‐terminal protein‐interaction and C‐terminal RNA/DNA helicase domains are conserved in the Saccharomyces cerevisiae homolog, Sen1p. Using genome‐wide expression analysis, we first show alterations in key cellular pathways such as: redox, unfolded protein response, and TOR in the yeast sen1 ΔN mutant (N‐terminal truncation). This mutant exhibited growth defects on nonfermentable carbon sources, was sensitive to oxidative stress, and showed severe loss of mitochondrial DNA. The growth defect could be partially rescued upon supplementation with reducing agents and antioxidants. Furthermore, the mutant showed higher levels of reactive oxygen species, lower UPR activity, and alterations in mitochondrial membrane potential, increase in vacuole acidity, free calcium ions in the cytosol, and resistance to rapamycin treatment. Notably, the sen1 ∆N mutant showed increased cell death and shortened chronological life span. Given the strong similarity of the yeast and human Sen1 proteins, our study thus provides a mechanism for the progressive neurological disorders associated with mutations in human senataxin. Mutations in the gene encoding senataxin are associated with neurodegenerative disorders, but the mechanism by which mutant senataxin contributes to neurodegeneration is unclear. To shed light on this issue, Tomar et al. investigated the functional effects of mutations in Sen1, the yeast orthologue of senataxin. Loss of the conserved N‐terminal domain of Sen1 deregulated ER, lipid and redox homeostasis; modulated the TOR signalling pathway and autophagy; induced mitochondrial and peroxisomal dysfunction; increased cell death and shortened the chronological life span. These results suggest that senataxin might have a key role in cellular homeostasis that underpins its function in neurodegeneration.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27718307</pmid><doi>10.1111/febs.13917</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2016-11, Vol.283 (22), p.4056-4083
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_miscellaneous_1850773058
source Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry
subjects apoptosis
Autophagy - genetics
Cardiolipins - biosynthesis
Cellular Senescence - genetics
chronological aging
DNA Helicases - genetics
DNA Helicases - metabolism
Gene Expression Profiling - methods
Gene Expression Regulation, Fungal
Gene Regulatory Networks
Homeostasis - genetics
Humans
Immunoblotting
Membrane Potential, Mitochondrial - genetics
Microbial Viability - genetics
Microscopy, Fluorescence
Mitochondria - genetics
Mitochondria - metabolism
Mitochondrial DNA
Models, Genetic
Mutation
Oxidation-Reduction
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
reactive oxygen species
Reverse Transcriptase Polymerase Chain Reaction
RNA Helicases - genetics
RNA Helicases - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
senataxin
Signal Transduction - genetics
unfolded protein response
Unfolded Protein Response - genetics
Yeast
title Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sen1,%20the%20homolog%20of%20human%20Senataxin,%20is%20critical%20for%20cell%20survival%20through%20regulation%20of%20redox%20homeostasis,%20mitochondrial%20function,%20and%20the%20TOR%20pathway%20in%20Saccharomyces%20cerevisiae&rft.jtitle=The%20FEBS%20journal&rft.au=Sariki,%20Santhosh%20Kumar&rft.date=2016-11&rft.volume=283&rft.issue=22&rft.spage=4056&rft.epage=4083&rft.pages=4056-4083&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.13917&rft_dat=%3Cproquest_cross%3E4266276741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844871665&rft_id=info:pmid/27718307&rfr_iscdi=true