Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae
Mutations in the Senataxin gene, SETX are known to cause the neurodegenerative disorders, ataxia with oculomotor apraxia type 2 (AOA2), and amyotrophic lateral sclerosis 4 (ALS4). However, the mechanism underlying disease pathogenesis is still unclear. The Senataxin N‐terminal protein‐interaction an...
Gespeichert in:
Veröffentlicht in: | The FEBS journal 2016-11, Vol.283 (22), p.4056-4083 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4083 |
---|---|
container_issue | 22 |
container_start_page | 4056 |
container_title | The FEBS journal |
container_volume | 283 |
creator | Sariki, Santhosh Kumar Sahu, Pushpendra Kumar Golla, Upendarrao Singh, Vikash Azad, Gajendra Kumar Tomar, Raghuvir S. |
description | Mutations in the Senataxin gene, SETX are known to cause the neurodegenerative disorders, ataxia with oculomotor apraxia type 2 (AOA2), and amyotrophic lateral sclerosis 4 (ALS4). However, the mechanism underlying disease pathogenesis is still unclear. The Senataxin N‐terminal protein‐interaction and C‐terminal RNA/DNA helicase domains are conserved in the Saccharomyces cerevisiae homolog, Sen1p. Using genome‐wide expression analysis, we first show alterations in key cellular pathways such as: redox, unfolded protein response, and TOR in the yeast sen1 ΔN mutant (N‐terminal truncation). This mutant exhibited growth defects on nonfermentable carbon sources, was sensitive to oxidative stress, and showed severe loss of mitochondrial DNA. The growth defect could be partially rescued upon supplementation with reducing agents and antioxidants. Furthermore, the mutant showed higher levels of reactive oxygen species, lower UPR activity, and alterations in mitochondrial membrane potential, increase in vacuole acidity, free calcium ions in the cytosol, and resistance to rapamycin treatment. Notably, the sen1 ∆N mutant showed increased cell death and shortened chronological life span. Given the strong similarity of the yeast and human Sen1 proteins, our study thus provides a mechanism for the progressive neurological disorders associated with mutations in human senataxin.
Mutations in the gene encoding senataxin are associated with neurodegenerative disorders, but the mechanism by which mutant senataxin contributes to neurodegeneration is unclear. To shed light on this issue, Tomar et al. investigated the functional effects of mutations in Sen1, the yeast orthologue of senataxin. Loss of the conserved N‐terminal domain of Sen1 deregulated ER, lipid and redox homeostasis; modulated the TOR signalling pathway and autophagy; induced mitochondrial and peroxisomal dysfunction; increased cell death and shortened the chronological life span. These results suggest that senataxin might have a key role in cellular homeostasis that underpins its function in neurodegeneration. |
doi_str_mv | 10.1111/febs.13917 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1850773058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4266276741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3907-9f5a55ba1c2f0e13b0066e6184a41d60f080d187a0e9f8369060408527cefbb63</originalsourceid><addsrcrecordid>eNqNkc1u1DAURiMEoqWw4QGQJTYIzRR7HP8toWoLUqVKtEjsohvneuIqiQc7mXbeiwes0yldsEB4Y-v66Oi7-oriLaPHLJ9PDut0zLhh6llxyFS5WpZS6OdP7_LnQfEqpRtKuSiNeVkcrJRimlN1WPy-woEtyNgiaUMfurAmwZF26mEg-QtGuPPDgvhEbPSjt9ARFyKx2HUkTXHrt3kytjFM65ZEXE8djD4MsyRiE-5mK4Y0QvJpQXo_BtuGoYl-Fk2DneEFgaF5iHB9-Z1sYGxvYUd8DgDWthBDv7OYA2DErU8e8HXxwkGX8M3jfVT8ODu9Pvm6vLg8_3by-WJpuaFqaZwAIWpgduUoMl5TKiVKpksoWSOpo5o2TCugaJzm0lBJS6rFSll0dS35UfFh793E8GvCNFa9T_PqMGCYUsW0oEpxKvR_oFxwZYQyGX3_F3oTpjjkRTJVlloxKUWmPu4pG0NKEV21ib6HuKsYrebaq7n26qH2DL97VE51j80T-qfnDLA9cOs73P1DVZ2dfrnaS-8B1Ue5kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844871665</pqid></control><display><type>article</type><title>Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Sariki, Santhosh Kumar ; Sahu, Pushpendra Kumar ; Golla, Upendarrao ; Singh, Vikash ; Azad, Gajendra Kumar ; Tomar, Raghuvir S.</creator><creatorcontrib>Sariki, Santhosh Kumar ; Sahu, Pushpendra Kumar ; Golla, Upendarrao ; Singh, Vikash ; Azad, Gajendra Kumar ; Tomar, Raghuvir S.</creatorcontrib><description>Mutations in the Senataxin gene, SETX are known to cause the neurodegenerative disorders, ataxia with oculomotor apraxia type 2 (AOA2), and amyotrophic lateral sclerosis 4 (ALS4). However, the mechanism underlying disease pathogenesis is still unclear. The Senataxin N‐terminal protein‐interaction and C‐terminal RNA/DNA helicase domains are conserved in the Saccharomyces cerevisiae homolog, Sen1p. Using genome‐wide expression analysis, we first show alterations in key cellular pathways such as: redox, unfolded protein response, and TOR in the yeast sen1 ΔN mutant (N‐terminal truncation). This mutant exhibited growth defects on nonfermentable carbon sources, was sensitive to oxidative stress, and showed severe loss of mitochondrial DNA. The growth defect could be partially rescued upon supplementation with reducing agents and antioxidants. Furthermore, the mutant showed higher levels of reactive oxygen species, lower UPR activity, and alterations in mitochondrial membrane potential, increase in vacuole acidity, free calcium ions in the cytosol, and resistance to rapamycin treatment. Notably, the sen1 ∆N mutant showed increased cell death and shortened chronological life span. Given the strong similarity of the yeast and human Sen1 proteins, our study thus provides a mechanism for the progressive neurological disorders associated with mutations in human senataxin.
Mutations in the gene encoding senataxin are associated with neurodegenerative disorders, but the mechanism by which mutant senataxin contributes to neurodegeneration is unclear. To shed light on this issue, Tomar et al. investigated the functional effects of mutations in Sen1, the yeast orthologue of senataxin. Loss of the conserved N‐terminal domain of Sen1 deregulated ER, lipid and redox homeostasis; modulated the TOR signalling pathway and autophagy; induced mitochondrial and peroxisomal dysfunction; increased cell death and shortened the chronological life span. These results suggest that senataxin might have a key role in cellular homeostasis that underpins its function in neurodegeneration.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.13917</identifier><identifier>PMID: 27718307</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>apoptosis ; Autophagy - genetics ; Cardiolipins - biosynthesis ; Cellular Senescence - genetics ; chronological aging ; DNA Helicases - genetics ; DNA Helicases - metabolism ; Gene Expression Profiling - methods ; Gene Expression Regulation, Fungal ; Gene Regulatory Networks ; Homeostasis - genetics ; Humans ; Immunoblotting ; Membrane Potential, Mitochondrial - genetics ; Microbial Viability - genetics ; Microscopy, Fluorescence ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondrial DNA ; Models, Genetic ; Mutation ; Oxidation-Reduction ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; reactive oxygen species ; Reverse Transcriptase Polymerase Chain Reaction ; RNA Helicases - genetics ; RNA Helicases - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; senataxin ; Signal Transduction - genetics ; unfolded protein response ; Unfolded Protein Response - genetics ; Yeast</subject><ispartof>The FEBS journal, 2016-11, Vol.283 (22), p.4056-4083</ispartof><rights>2016 Federation of European Biochemical Societies</rights><rights>2016 Federation of European Biochemical Societies.</rights><rights>Copyright © 2016 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3907-9f5a55ba1c2f0e13b0066e6184a41d60f080d187a0e9f8369060408527cefbb63</citedby><cites>FETCH-LOGICAL-c3907-9f5a55ba1c2f0e13b0066e6184a41d60f080d187a0e9f8369060408527cefbb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.13917$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.13917$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27718307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sariki, Santhosh Kumar</creatorcontrib><creatorcontrib>Sahu, Pushpendra Kumar</creatorcontrib><creatorcontrib>Golla, Upendarrao</creatorcontrib><creatorcontrib>Singh, Vikash</creatorcontrib><creatorcontrib>Azad, Gajendra Kumar</creatorcontrib><creatorcontrib>Tomar, Raghuvir S.</creatorcontrib><title>Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Mutations in the Senataxin gene, SETX are known to cause the neurodegenerative disorders, ataxia with oculomotor apraxia type 2 (AOA2), and amyotrophic lateral sclerosis 4 (ALS4). However, the mechanism underlying disease pathogenesis is still unclear. The Senataxin N‐terminal protein‐interaction and C‐terminal RNA/DNA helicase domains are conserved in the Saccharomyces cerevisiae homolog, Sen1p. Using genome‐wide expression analysis, we first show alterations in key cellular pathways such as: redox, unfolded protein response, and TOR in the yeast sen1 ΔN mutant (N‐terminal truncation). This mutant exhibited growth defects on nonfermentable carbon sources, was sensitive to oxidative stress, and showed severe loss of mitochondrial DNA. The growth defect could be partially rescued upon supplementation with reducing agents and antioxidants. Furthermore, the mutant showed higher levels of reactive oxygen species, lower UPR activity, and alterations in mitochondrial membrane potential, increase in vacuole acidity, free calcium ions in the cytosol, and resistance to rapamycin treatment. Notably, the sen1 ∆N mutant showed increased cell death and shortened chronological life span. Given the strong similarity of the yeast and human Sen1 proteins, our study thus provides a mechanism for the progressive neurological disorders associated with mutations in human senataxin.
Mutations in the gene encoding senataxin are associated with neurodegenerative disorders, but the mechanism by which mutant senataxin contributes to neurodegeneration is unclear. To shed light on this issue, Tomar et al. investigated the functional effects of mutations in Sen1, the yeast orthologue of senataxin. Loss of the conserved N‐terminal domain of Sen1 deregulated ER, lipid and redox homeostasis; modulated the TOR signalling pathway and autophagy; induced mitochondrial and peroxisomal dysfunction; increased cell death and shortened the chronological life span. These results suggest that senataxin might have a key role in cellular homeostasis that underpins its function in neurodegeneration.</description><subject>apoptosis</subject><subject>Autophagy - genetics</subject><subject>Cardiolipins - biosynthesis</subject><subject>Cellular Senescence - genetics</subject><subject>chronological aging</subject><subject>DNA Helicases - genetics</subject><subject>DNA Helicases - metabolism</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene Regulatory Networks</subject><subject>Homeostasis - genetics</subject><subject>Humans</subject><subject>Immunoblotting</subject><subject>Membrane Potential, Mitochondrial - genetics</subject><subject>Microbial Viability - genetics</subject><subject>Microscopy, Fluorescence</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Oxidation-Reduction</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>reactive oxygen species</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA Helicases - genetics</subject><subject>RNA Helicases - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>senataxin</subject><subject>Signal Transduction - genetics</subject><subject>unfolded protein response</subject><subject>Unfolded Protein Response - genetics</subject><subject>Yeast</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAURiMEoqWw4QGQJTYIzRR7HP8toWoLUqVKtEjsohvneuIqiQc7mXbeiwes0yldsEB4Y-v66Oi7-oriLaPHLJ9PDut0zLhh6llxyFS5WpZS6OdP7_LnQfEqpRtKuSiNeVkcrJRimlN1WPy-woEtyNgiaUMfurAmwZF26mEg-QtGuPPDgvhEbPSjt9ARFyKx2HUkTXHrt3kytjFM65ZEXE8djD4MsyRiE-5mK4Y0QvJpQXo_BtuGoYl-Fk2DneEFgaF5iHB9-Z1sYGxvYUd8DgDWthBDv7OYA2DErU8e8HXxwkGX8M3jfVT8ODu9Pvm6vLg8_3by-WJpuaFqaZwAIWpgduUoMl5TKiVKpksoWSOpo5o2TCugaJzm0lBJS6rFSll0dS35UfFh793E8GvCNFa9T_PqMGCYUsW0oEpxKvR_oFxwZYQyGX3_F3oTpjjkRTJVlloxKUWmPu4pG0NKEV21ib6HuKsYrebaq7n26qH2DL97VE51j80T-qfnDLA9cOs73P1DVZ2dfrnaS-8B1Ue5kA</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Sariki, Santhosh Kumar</creator><creator>Sahu, Pushpendra Kumar</creator><creator>Golla, Upendarrao</creator><creator>Singh, Vikash</creator><creator>Azad, Gajendra Kumar</creator><creator>Tomar, Raghuvir S.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201611</creationdate><title>Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae</title><author>Sariki, Santhosh Kumar ; Sahu, Pushpendra Kumar ; Golla, Upendarrao ; Singh, Vikash ; Azad, Gajendra Kumar ; Tomar, Raghuvir S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3907-9f5a55ba1c2f0e13b0066e6184a41d60f080d187a0e9f8369060408527cefbb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>apoptosis</topic><topic>Autophagy - genetics</topic><topic>Cardiolipins - biosynthesis</topic><topic>Cellular Senescence - genetics</topic><topic>chronological aging</topic><topic>DNA Helicases - genetics</topic><topic>DNA Helicases - metabolism</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene Regulatory Networks</topic><topic>Homeostasis - genetics</topic><topic>Humans</topic><topic>Immunoblotting</topic><topic>Membrane Potential, Mitochondrial - genetics</topic><topic>Microbial Viability - genetics</topic><topic>Microscopy, Fluorescence</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Oxidation-Reduction</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>reactive oxygen species</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA Helicases - genetics</topic><topic>RNA Helicases - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>senataxin</topic><topic>Signal Transduction - genetics</topic><topic>unfolded protein response</topic><topic>Unfolded Protein Response - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sariki, Santhosh Kumar</creatorcontrib><creatorcontrib>Sahu, Pushpendra Kumar</creatorcontrib><creatorcontrib>Golla, Upendarrao</creatorcontrib><creatorcontrib>Singh, Vikash</creatorcontrib><creatorcontrib>Azad, Gajendra Kumar</creatorcontrib><creatorcontrib>Tomar, Raghuvir S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sariki, Santhosh Kumar</au><au>Sahu, Pushpendra Kumar</au><au>Golla, Upendarrao</au><au>Singh, Vikash</au><au>Azad, Gajendra Kumar</au><au>Tomar, Raghuvir S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2016-11</date><risdate>2016</risdate><volume>283</volume><issue>22</issue><spage>4056</spage><epage>4083</epage><pages>4056-4083</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Mutations in the Senataxin gene, SETX are known to cause the neurodegenerative disorders, ataxia with oculomotor apraxia type 2 (AOA2), and amyotrophic lateral sclerosis 4 (ALS4). However, the mechanism underlying disease pathogenesis is still unclear. The Senataxin N‐terminal protein‐interaction and C‐terminal RNA/DNA helicase domains are conserved in the Saccharomyces cerevisiae homolog, Sen1p. Using genome‐wide expression analysis, we first show alterations in key cellular pathways such as: redox, unfolded protein response, and TOR in the yeast sen1 ΔN mutant (N‐terminal truncation). This mutant exhibited growth defects on nonfermentable carbon sources, was sensitive to oxidative stress, and showed severe loss of mitochondrial DNA. The growth defect could be partially rescued upon supplementation with reducing agents and antioxidants. Furthermore, the mutant showed higher levels of reactive oxygen species, lower UPR activity, and alterations in mitochondrial membrane potential, increase in vacuole acidity, free calcium ions in the cytosol, and resistance to rapamycin treatment. Notably, the sen1 ∆N mutant showed increased cell death and shortened chronological life span. Given the strong similarity of the yeast and human Sen1 proteins, our study thus provides a mechanism for the progressive neurological disorders associated with mutations in human senataxin.
Mutations in the gene encoding senataxin are associated with neurodegenerative disorders, but the mechanism by which mutant senataxin contributes to neurodegeneration is unclear. To shed light on this issue, Tomar et al. investigated the functional effects of mutations in Sen1, the yeast orthologue of senataxin. Loss of the conserved N‐terminal domain of Sen1 deregulated ER, lipid and redox homeostasis; modulated the TOR signalling pathway and autophagy; induced mitochondrial and peroxisomal dysfunction; increased cell death and shortened the chronological life span. These results suggest that senataxin might have a key role in cellular homeostasis that underpins its function in neurodegeneration.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27718307</pmid><doi>10.1111/febs.13917</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-464X |
ispartof | The FEBS journal, 2016-11, Vol.283 (22), p.4056-4083 |
issn | 1742-464X 1742-4658 |
language | eng |
recordid | cdi_proquest_miscellaneous_1850773058 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry |
subjects | apoptosis Autophagy - genetics Cardiolipins - biosynthesis Cellular Senescence - genetics chronological aging DNA Helicases - genetics DNA Helicases - metabolism Gene Expression Profiling - methods Gene Expression Regulation, Fungal Gene Regulatory Networks Homeostasis - genetics Humans Immunoblotting Membrane Potential, Mitochondrial - genetics Microbial Viability - genetics Microscopy, Fluorescence Mitochondria - genetics Mitochondria - metabolism Mitochondrial DNA Models, Genetic Mutation Oxidation-Reduction Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism reactive oxygen species Reverse Transcriptase Polymerase Chain Reaction RNA Helicases - genetics RNA Helicases - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism senataxin Signal Transduction - genetics unfolded protein response Unfolded Protein Response - genetics Yeast |
title | Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sen1,%20the%20homolog%20of%20human%20Senataxin,%20is%20critical%20for%20cell%20survival%20through%20regulation%20of%20redox%20homeostasis,%20mitochondrial%20function,%20and%20the%20TOR%20pathway%20in%20Saccharomyces%20cerevisiae&rft.jtitle=The%20FEBS%20journal&rft.au=Sariki,%20Santhosh%20Kumar&rft.date=2016-11&rft.volume=283&rft.issue=22&rft.spage=4056&rft.epage=4083&rft.pages=4056-4083&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.13917&rft_dat=%3Cproquest_cross%3E4266276741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844871665&rft_id=info:pmid/27718307&rfr_iscdi=true |