Mechanical properties that influence antimicrobial peptide activity in lipid membranes

Antimicrobial peptides are small amphiphilic proteins found in animals and plants as essential components of the innate immune system and whose function is to control bacterial infectious activity. In order to accomplish their function, antimicrobial peptides use different mechanisms of action which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2016-12, Vol.100 (24), p.10251-10263
Hauptverfasser: Marín-Medina, Nathaly, Ramírez, Diego Alejandro, Trier, Steve, Leidy, Chad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10263
container_issue 24
container_start_page 10251
container_title Applied microbiology and biotechnology
container_volume 100
creator Marín-Medina, Nathaly
Ramírez, Diego Alejandro
Trier, Steve
Leidy, Chad
description Antimicrobial peptides are small amphiphilic proteins found in animals and plants as essential components of the innate immune system and whose function is to control bacterial infectious activity. In order to accomplish their function, antimicrobial peptides use different mechanisms of action which have been deeply studied in view of their potential exploitation to treat antibiotic-resistant bacterial infections. One of the main mechanisms of action of these peptides is the disruption of the bacterial membrane through pore formation, which, in some cases, takes place via a monomer to oligomer cooperative transition. Previous studies have shown that lipid composition, and the presence of exogenous components, such as cholesterol in model membranes or carotenoids in bacteria, can affect the potency of distinct antimicrobial peptides. At the same time, considering the membrane as a two-dimensional material, it has been shown that membrane composition defines its mechanical properties which might be relevant in many membrane-related processes. Nevertheless, the correlation between the mechanical properties of the membrane and antimicrobial peptide potency has not been considered according to the importance it deserves. The relevance of these mechanical properties in membrane deformation due to peptide insertion is reviewed here for different types of pores in order to elucidate if indeed membrane composition affects antimicrobial peptide activity by modulation of the mechanical properties of the membrane. This would also provide a better understanding of the mechanisms used by bacteria to overcome antimicrobial peptide activity.
doi_str_mv 10.1007/s00253-016-7975-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1850768248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A471200312</galeid><sourcerecordid>A471200312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-e2466e27bd2648c62d3c1fee5c8770c9b3e4000782d93e970292de6422dedb5b3</originalsourceid><addsrcrecordid>eNqNkluLFDEQhYMo7jj6A3yRBl_0odfc03lcFi8LK4K315BOV89m6ZtJWtx_bw2zXkYUJJBA5TuHquQQ8pjRU0apeZEp5UrUlOnaWKNqe4dsmBS8pprJu2RDGRaNss0JeZDzNaWMN1rfJyfcNMIIpjfk81sIV36KwQ_VkuYFUomQq3LlSxWnflhhClD5qcQxhjS3cc_BUmKH1VDi11huEKyGuMSuGmFsk58gPyT3ej9keHR7bsmnVy8_nr-pL9-9vjg_u6yDkqLUwKXWwE3bcS2boHknAusBVGiMocG2AiTFSRveWQHWUG55B1py3LtWtWJLnh18sfcvK-TixpgDDAM2Ma_ZsUZRoxsum_9AhWVcKGsQffoHej2vacJBkJJccsGs-kXt_AAOH2suyYe9qTuThnFKBfptyelfKFwd4IvOE_QR60eC50cCZAp8Kzu_5uwuPrw_ZtmBxa_JOUHvlhRHn24co24fEXeIiMOIuH1EnEXNk9vh1naE7qfiRyYQ4Acg49W0g_Tb9P90_Q7HIcM0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1842423195</pqid></control><display><type>article</type><title>Mechanical properties that influence antimicrobial peptide activity in lipid membranes</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Marín-Medina, Nathaly ; Ramírez, Diego Alejandro ; Trier, Steve ; Leidy, Chad</creator><creatorcontrib>Marín-Medina, Nathaly ; Ramírez, Diego Alejandro ; Trier, Steve ; Leidy, Chad</creatorcontrib><description>Antimicrobial peptides are small amphiphilic proteins found in animals and plants as essential components of the innate immune system and whose function is to control bacterial infectious activity. In order to accomplish their function, antimicrobial peptides use different mechanisms of action which have been deeply studied in view of their potential exploitation to treat antibiotic-resistant bacterial infections. One of the main mechanisms of action of these peptides is the disruption of the bacterial membrane through pore formation, which, in some cases, takes place via a monomer to oligomer cooperative transition. Previous studies have shown that lipid composition, and the presence of exogenous components, such as cholesterol in model membranes or carotenoids in bacteria, can affect the potency of distinct antimicrobial peptides. At the same time, considering the membrane as a two-dimensional material, it has been shown that membrane composition defines its mechanical properties which might be relevant in many membrane-related processes. Nevertheless, the correlation between the mechanical properties of the membrane and antimicrobial peptide potency has not been considered according to the importance it deserves. The relevance of these mechanical properties in membrane deformation due to peptide insertion is reviewed here for different types of pores in order to elucidate if indeed membrane composition affects antimicrobial peptide activity by modulation of the mechanical properties of the membrane. This would also provide a better understanding of the mechanisms used by bacteria to overcome antimicrobial peptide activity.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-016-7975-9</identifier><identifier>PMID: 27837316</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anti-Infective Agents - chemistry ; Anti-Infective Agents - metabolism ; Antibiotic resistance ; Antimicrobial agents ; Antimicrobial Cationic Peptides - chemistry ; Antimicrobial Cationic Peptides - metabolism ; Bacteria ; Bacterial diseases ; Bacterial infections ; Binding sites ; Biomedical and Life Sciences ; Biotechnology ; Carotenoids ; Chemical Phenomena ; Immune system ; Life Sciences ; Lipid Bilayers - chemistry ; Lipid membranes ; Lipids ; Mechanical properties ; Membrane Proteins - metabolism ; Membranes ; Microbial Genetics and Genomics ; Microbiology ; Mini-Review ; Peptides ; Permeability ; Physiological aspects ; Proteins ; Studies</subject><ispartof>Applied microbiology and biotechnology, 2016-12, Vol.100 (24), p.10251-10263</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-e2466e27bd2648c62d3c1fee5c8770c9b3e4000782d93e970292de6422dedb5b3</citedby><cites>FETCH-LOGICAL-c543t-e2466e27bd2648c62d3c1fee5c8770c9b3e4000782d93e970292de6422dedb5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-016-7975-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-016-7975-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27837316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marín-Medina, Nathaly</creatorcontrib><creatorcontrib>Ramírez, Diego Alejandro</creatorcontrib><creatorcontrib>Trier, Steve</creatorcontrib><creatorcontrib>Leidy, Chad</creatorcontrib><title>Mechanical properties that influence antimicrobial peptide activity in lipid membranes</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Antimicrobial peptides are small amphiphilic proteins found in animals and plants as essential components of the innate immune system and whose function is to control bacterial infectious activity. In order to accomplish their function, antimicrobial peptides use different mechanisms of action which have been deeply studied in view of their potential exploitation to treat antibiotic-resistant bacterial infections. One of the main mechanisms of action of these peptides is the disruption of the bacterial membrane through pore formation, which, in some cases, takes place via a monomer to oligomer cooperative transition. Previous studies have shown that lipid composition, and the presence of exogenous components, such as cholesterol in model membranes or carotenoids in bacteria, can affect the potency of distinct antimicrobial peptides. At the same time, considering the membrane as a two-dimensional material, it has been shown that membrane composition defines its mechanical properties which might be relevant in many membrane-related processes. Nevertheless, the correlation between the mechanical properties of the membrane and antimicrobial peptide potency has not been considered according to the importance it deserves. The relevance of these mechanical properties in membrane deformation due to peptide insertion is reviewed here for different types of pores in order to elucidate if indeed membrane composition affects antimicrobial peptide activity by modulation of the mechanical properties of the membrane. This would also provide a better understanding of the mechanisms used by bacteria to overcome antimicrobial peptide activity.</description><subject>Anti-Infective Agents - chemistry</subject><subject>Anti-Infective Agents - metabolism</subject><subject>Antibiotic resistance</subject><subject>Antimicrobial agents</subject><subject>Antimicrobial Cationic Peptides - chemistry</subject><subject>Antimicrobial Cationic Peptides - metabolism</subject><subject>Bacteria</subject><subject>Bacterial diseases</subject><subject>Bacterial infections</subject><subject>Binding sites</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Carotenoids</subject><subject>Chemical Phenomena</subject><subject>Immune system</subject><subject>Life Sciences</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid membranes</subject><subject>Lipids</subject><subject>Mechanical properties</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mini-Review</subject><subject>Peptides</subject><subject>Permeability</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Studies</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkluLFDEQhYMo7jj6A3yRBl_0odfc03lcFi8LK4K315BOV89m6ZtJWtx_bw2zXkYUJJBA5TuHquQQ8pjRU0apeZEp5UrUlOnaWKNqe4dsmBS8pprJu2RDGRaNss0JeZDzNaWMN1rfJyfcNMIIpjfk81sIV36KwQ_VkuYFUomQq3LlSxWnflhhClD5qcQxhjS3cc_BUmKH1VDi11huEKyGuMSuGmFsk58gPyT3ej9keHR7bsmnVy8_nr-pL9-9vjg_u6yDkqLUwKXWwE3bcS2boHknAusBVGiMocG2AiTFSRveWQHWUG55B1py3LtWtWJLnh18sfcvK-TixpgDDAM2Ma_ZsUZRoxsum_9AhWVcKGsQffoHej2vacJBkJJccsGs-kXt_AAOH2suyYe9qTuThnFKBfptyelfKFwd4IvOE_QR60eC50cCZAp8Kzu_5uwuPrw_ZtmBxa_JOUHvlhRHn24co24fEXeIiMOIuH1EnEXNk9vh1naE7qfiRyYQ4Acg49W0g_Tb9P90_Q7HIcM0</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Marín-Medina, Nathaly</creator><creator>Ramírez, Diego Alejandro</creator><creator>Trier, Steve</creator><creator>Leidy, Chad</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20161201</creationdate><title>Mechanical properties that influence antimicrobial peptide activity in lipid membranes</title><author>Marín-Medina, Nathaly ; Ramírez, Diego Alejandro ; Trier, Steve ; Leidy, Chad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-e2466e27bd2648c62d3c1fee5c8770c9b3e4000782d93e970292de6422dedb5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anti-Infective Agents - chemistry</topic><topic>Anti-Infective Agents - metabolism</topic><topic>Antibiotic resistance</topic><topic>Antimicrobial agents</topic><topic>Antimicrobial Cationic Peptides - chemistry</topic><topic>Antimicrobial Cationic Peptides - metabolism</topic><topic>Bacteria</topic><topic>Bacterial diseases</topic><topic>Bacterial infections</topic><topic>Binding sites</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Carotenoids</topic><topic>Chemical Phenomena</topic><topic>Immune system</topic><topic>Life Sciences</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid membranes</topic><topic>Lipids</topic><topic>Mechanical properties</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mini-Review</topic><topic>Peptides</topic><topic>Permeability</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marín-Medina, Nathaly</creatorcontrib><creatorcontrib>Ramírez, Diego Alejandro</creatorcontrib><creatorcontrib>Trier, Steve</creatorcontrib><creatorcontrib>Leidy, Chad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marín-Medina, Nathaly</au><au>Ramírez, Diego Alejandro</au><au>Trier, Steve</au><au>Leidy, Chad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties that influence antimicrobial peptide activity in lipid membranes</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>100</volume><issue>24</issue><spage>10251</spage><epage>10263</epage><pages>10251-10263</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Antimicrobial peptides are small amphiphilic proteins found in animals and plants as essential components of the innate immune system and whose function is to control bacterial infectious activity. In order to accomplish their function, antimicrobial peptides use different mechanisms of action which have been deeply studied in view of their potential exploitation to treat antibiotic-resistant bacterial infections. One of the main mechanisms of action of these peptides is the disruption of the bacterial membrane through pore formation, which, in some cases, takes place via a monomer to oligomer cooperative transition. Previous studies have shown that lipid composition, and the presence of exogenous components, such as cholesterol in model membranes or carotenoids in bacteria, can affect the potency of distinct antimicrobial peptides. At the same time, considering the membrane as a two-dimensional material, it has been shown that membrane composition defines its mechanical properties which might be relevant in many membrane-related processes. Nevertheless, the correlation between the mechanical properties of the membrane and antimicrobial peptide potency has not been considered according to the importance it deserves. The relevance of these mechanical properties in membrane deformation due to peptide insertion is reviewed here for different types of pores in order to elucidate if indeed membrane composition affects antimicrobial peptide activity by modulation of the mechanical properties of the membrane. This would also provide a better understanding of the mechanisms used by bacteria to overcome antimicrobial peptide activity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27837316</pmid><doi>10.1007/s00253-016-7975-9</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2016-12, Vol.100 (24), p.10251-10263
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1850768248
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Anti-Infective Agents - chemistry
Anti-Infective Agents - metabolism
Antibiotic resistance
Antimicrobial agents
Antimicrobial Cationic Peptides - chemistry
Antimicrobial Cationic Peptides - metabolism
Bacteria
Bacterial diseases
Bacterial infections
Binding sites
Biomedical and Life Sciences
Biotechnology
Carotenoids
Chemical Phenomena
Immune system
Life Sciences
Lipid Bilayers - chemistry
Lipid membranes
Lipids
Mechanical properties
Membrane Proteins - metabolism
Membranes
Microbial Genetics and Genomics
Microbiology
Mini-Review
Peptides
Permeability
Physiological aspects
Proteins
Studies
title Mechanical properties that influence antimicrobial peptide activity in lipid membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20that%20influence%20antimicrobial%20peptide%20activity%20in%20lipid%20membranes&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Mar%C3%ADn-Medina,%20Nathaly&rft.date=2016-12-01&rft.volume=100&rft.issue=24&rft.spage=10251&rft.epage=10263&rft.pages=10251-10263&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-016-7975-9&rft_dat=%3Cgale_proqu%3EA471200312%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1842423195&rft_id=info:pmid/27837316&rft_galeid=A471200312&rfr_iscdi=true