Repair of oxidized purines and damaged pyrimidines by E. coli Fpg protein: Different roles of proline 2 and lysine 57 residues

The Escherichia coli Fpg protein is involved in the repair of oxidized purines, including the highly mutagenic 7,8‐dihydro‐8‐oxoguanine (8‐oxoG). The Fpg protein also excises various oxidized pyrimidines with high efficiency. We examined, by targeted mutagenesis, the role of two highly conserved ami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental and molecular mutagenesis 2002, Vol.39 (1), p.10-17
Hauptverfasser: Saparbaev, Murat, Sidorkina, Olga M., Jurado, Juan, Privezentzev, Cyril V., Greenberg, Marc M., Laval, Jacques
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 10
container_title Environmental and molecular mutagenesis
container_volume 39
creator Saparbaev, Murat
Sidorkina, Olga M.
Jurado, Juan
Privezentzev, Cyril V.
Greenberg, Marc M.
Laval, Jacques
description The Escherichia coli Fpg protein is involved in the repair of oxidized purines, including the highly mutagenic 7,8‐dihydro‐8‐oxoguanine (8‐oxoG). The Fpg protein also excises various oxidized pyrimidines with high efficiency. We examined, by targeted mutagenesis, the role of two highly conserved amino acid residues, proline 2 (P2) and lysine 57 (K57), on the catalytic activities of the Fpg protein toward a ring‐fragmentation product of thymine (αRT) and 5,6‐dihydrothymine (dHT). The following E. coli mutant Fpg proteins were investigated: lysine 57 → glycine (FpgK57G), proline 2 → glycine (FpgP2G), and proline 2 → glutamic acid (FpgP2E). The FpgK57G protein had barely detectable αRT and dHT‐DNA glycosylase activities and produced minute amounts of a Schiff‐base complex upon reaction with αRT containing DNA. In contrast, the activity of an FpgP2G mutant toward αRT was comparable to the wild type activity and produced a Schiff‐base complex with this substrate. FpgP2E was completely inactive in all the assays, in contrast, to the other mutants. The crystal structure of a homologous Fpg protein from an extreme thermophile, Thermus thermophilus HB8, reveals that it is composed of two distinct domains connected by a flexible hinge (Sugahara et al. [2000]: EMBO J 19:3857–3869). The N‐terminal proline, one primary residue for enzymatic catalysis, is positioned at the bottom of a cleft in close proximity to lysine 52 (analogous to K57 of the E. coli Fpg). Based on the biochemical assays, together with the crystal structure of T. thermophilus HB8 Fpg protein, we propose a two‐nucleophile model for the enzymatic catalysis. Environ. Mol. Mutagen. 39:10–17, 2002 © 2002 Wiley‐Liss, Inc.
doi_str_mv 10.1002/em.10041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18480179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18480179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4161-c16dc4f4592060ce613426da7f77c234b86028183523b7d697c4ec1b37533de23</originalsourceid><addsrcrecordid>eNp1kE1vEzEQhi0EoqEg8QuQLyAuWzy24_Vyq0IaPgpIBQTiYjn2bGXYL-xEdDnw2_E2Cz1xGnnm8fvOvIQ8BHYCjPFn2E5Vwi2yAFbpgnPNbpMF05UolKr4EbmX0jfGAGTF75IjAA2CV7Agvy9wsCHSvqb9VfDhF3o67GPoMFHbeeptay-n3hhDm-dTfzvS9Ql1fRPo2XBJh9jvMHTP6YtQ1xix29HYN5nLmnnW5D-UX4s1Y5oey5JGTMHvMd0nd2rbJHww12Py6Wz9cfWyOH-_ebU6PS-cBAWFA-WdrOWy4kwxhwqE5Mrbsi5Lx4XcasW4Bi2WXGxLr6rSSXSwFeVSCI9cHJMnB9280I_suzNtSA6bxnbY75MBLTWDssrg0wPoYp9SxNoM-XAbRwPMTFkbbM111hl9NGvuty36G3AONwOPZ8AmZ5s62s6FdMMJqaRkLHPFgfsZGhz_a2jWb_8az3xIO7z6x9v43agyn2w-v9uYNxdf9OvV1435IP4A9QeiPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18480179</pqid></control><display><type>article</type><title>Repair of oxidized purines and damaged pyrimidines by E. coli Fpg protein: Different roles of proline 2 and lysine 57 residues</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Saparbaev, Murat ; Sidorkina, Olga M. ; Jurado, Juan ; Privezentzev, Cyril V. ; Greenberg, Marc M. ; Laval, Jacques</creator><creatorcontrib>Saparbaev, Murat ; Sidorkina, Olga M. ; Jurado, Juan ; Privezentzev, Cyril V. ; Greenberg, Marc M. ; Laval, Jacques</creatorcontrib><description>The Escherichia coli Fpg protein is involved in the repair of oxidized purines, including the highly mutagenic 7,8‐dihydro‐8‐oxoguanine (8‐oxoG). The Fpg protein also excises various oxidized pyrimidines with high efficiency. We examined, by targeted mutagenesis, the role of two highly conserved amino acid residues, proline 2 (P2) and lysine 57 (K57), on the catalytic activities of the Fpg protein toward a ring‐fragmentation product of thymine (αRT) and 5,6‐dihydrothymine (dHT). The following E. coli mutant Fpg proteins were investigated: lysine 57 → glycine (FpgK57G), proline 2 → glycine (FpgP2G), and proline 2 → glutamic acid (FpgP2E). The FpgK57G protein had barely detectable αRT and dHT‐DNA glycosylase activities and produced minute amounts of a Schiff‐base complex upon reaction with αRT containing DNA. In contrast, the activity of an FpgP2G mutant toward αRT was comparable to the wild type activity and produced a Schiff‐base complex with this substrate. FpgP2E was completely inactive in all the assays, in contrast, to the other mutants. The crystal structure of a homologous Fpg protein from an extreme thermophile, Thermus thermophilus HB8, reveals that it is composed of two distinct domains connected by a flexible hinge (Sugahara et al. [2000]: EMBO J 19:3857–3869). The N‐terminal proline, one primary residue for enzymatic catalysis, is positioned at the bottom of a cleft in close proximity to lysine 52 (analogous to K57 of the E. coli Fpg). Based on the biochemical assays, together with the crystal structure of T. thermophilus HB8 Fpg protein, we propose a two‐nucleophile model for the enzymatic catalysis. Environ. Mol. Mutagen. 39:10–17, 2002 © 2002 Wiley‐Liss, Inc.</description><identifier>ISSN: 0893-6692</identifier><identifier>EISSN: 1098-2280</identifier><identifier>DOI: 10.1002/em.10041</identifier><identifier>PMID: 11813291</identifier><identifier>CODEN: EMMUEG</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>8-oxoguanine ; AP lyase ; Bacteriology ; Biological and medical sciences ; Catalytic Domain ; Chemical mutagenesis ; DNA repair ; DNA Repair - physiology ; DNA-Formamidopyrimidine Glycosylase ; Escherichia coli Proteins ; Fpg ; Fundamental and applied biological sciences. Psychology ; Genetics ; Guanosine - analogs &amp; derivatives ; Guanosine - chemistry ; Lysine - chemistry ; Medical sciences ; Microbiology ; Molecular and cellular biology ; Molecular genetics ; Mutagenesis. Repair ; Mutation ; N-Glycosyl Hydrolases - genetics ; N-Glycosyl Hydrolases - metabolism ; Oxidation-Reduction ; oxidative damage ; Proline - chemistry ; Purines - chemistry ; Purines - metabolism ; Pyrimidines - chemistry ; Pyrimidines - metabolism ; Schiff Bases ; Thymidine - chemistry ; Thymidine - metabolism ; Toxicology</subject><ispartof>Environmental and molecular mutagenesis, 2002, Vol.39 (1), p.10-17</ispartof><rights>Copyright © 2002 Wiley‐Liss, Inc.</rights><rights>2002 INIST-CNRS</rights><rights>Copyright 2002 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4161-c16dc4f4592060ce613426da7f77c234b86028183523b7d697c4ec1b37533de23</citedby><cites>FETCH-LOGICAL-c4161-c16dc4f4592060ce613426da7f77c234b86028183523b7d697c4ec1b37533de23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fem.10041$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fem.10041$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,4010,27900,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13464400$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11813291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saparbaev, Murat</creatorcontrib><creatorcontrib>Sidorkina, Olga M.</creatorcontrib><creatorcontrib>Jurado, Juan</creatorcontrib><creatorcontrib>Privezentzev, Cyril V.</creatorcontrib><creatorcontrib>Greenberg, Marc M.</creatorcontrib><creatorcontrib>Laval, Jacques</creatorcontrib><title>Repair of oxidized purines and damaged pyrimidines by E. coli Fpg protein: Different roles of proline 2 and lysine 57 residues</title><title>Environmental and molecular mutagenesis</title><addtitle>Environ. Mol. Mutagen</addtitle><description>The Escherichia coli Fpg protein is involved in the repair of oxidized purines, including the highly mutagenic 7,8‐dihydro‐8‐oxoguanine (8‐oxoG). The Fpg protein also excises various oxidized pyrimidines with high efficiency. We examined, by targeted mutagenesis, the role of two highly conserved amino acid residues, proline 2 (P2) and lysine 57 (K57), on the catalytic activities of the Fpg protein toward a ring‐fragmentation product of thymine (αRT) and 5,6‐dihydrothymine (dHT). The following E. coli mutant Fpg proteins were investigated: lysine 57 → glycine (FpgK57G), proline 2 → glycine (FpgP2G), and proline 2 → glutamic acid (FpgP2E). The FpgK57G protein had barely detectable αRT and dHT‐DNA glycosylase activities and produced minute amounts of a Schiff‐base complex upon reaction with αRT containing DNA. In contrast, the activity of an FpgP2G mutant toward αRT was comparable to the wild type activity and produced a Schiff‐base complex with this substrate. FpgP2E was completely inactive in all the assays, in contrast, to the other mutants. The crystal structure of a homologous Fpg protein from an extreme thermophile, Thermus thermophilus HB8, reveals that it is composed of two distinct domains connected by a flexible hinge (Sugahara et al. [2000]: EMBO J 19:3857–3869). The N‐terminal proline, one primary residue for enzymatic catalysis, is positioned at the bottom of a cleft in close proximity to lysine 52 (analogous to K57 of the E. coli Fpg). Based on the biochemical assays, together with the crystal structure of T. thermophilus HB8 Fpg protein, we propose a two‐nucleophile model for the enzymatic catalysis. Environ. Mol. Mutagen. 39:10–17, 2002 © 2002 Wiley‐Liss, Inc.</description><subject>8-oxoguanine</subject><subject>AP lyase</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Catalytic Domain</subject><subject>Chemical mutagenesis</subject><subject>DNA repair</subject><subject>DNA Repair - physiology</subject><subject>DNA-Formamidopyrimidine Glycosylase</subject><subject>Escherichia coli Proteins</subject><subject>Fpg</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics</subject><subject>Guanosine - analogs &amp; derivatives</subject><subject>Guanosine - chemistry</subject><subject>Lysine - chemistry</subject><subject>Medical sciences</subject><subject>Microbiology</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutagenesis. Repair</subject><subject>Mutation</subject><subject>N-Glycosyl Hydrolases - genetics</subject><subject>N-Glycosyl Hydrolases - metabolism</subject><subject>Oxidation-Reduction</subject><subject>oxidative damage</subject><subject>Proline - chemistry</subject><subject>Purines - chemistry</subject><subject>Purines - metabolism</subject><subject>Pyrimidines - chemistry</subject><subject>Pyrimidines - metabolism</subject><subject>Schiff Bases</subject><subject>Thymidine - chemistry</subject><subject>Thymidine - metabolism</subject><subject>Toxicology</subject><issn>0893-6692</issn><issn>1098-2280</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1vEzEQhi0EoqEg8QuQLyAuWzy24_Vyq0IaPgpIBQTiYjn2bGXYL-xEdDnw2_E2Cz1xGnnm8fvOvIQ8BHYCjPFn2E5Vwi2yAFbpgnPNbpMF05UolKr4EbmX0jfGAGTF75IjAA2CV7Agvy9wsCHSvqb9VfDhF3o67GPoMFHbeeptay-n3hhDm-dTfzvS9Ql1fRPo2XBJh9jvMHTP6YtQ1xix29HYN5nLmnnW5D-UX4s1Y5oey5JGTMHvMd0nd2rbJHww12Py6Wz9cfWyOH-_ebU6PS-cBAWFA-WdrOWy4kwxhwqE5Mrbsi5Lx4XcasW4Bi2WXGxLr6rSSXSwFeVSCI9cHJMnB9280I_suzNtSA6bxnbY75MBLTWDssrg0wPoYp9SxNoM-XAbRwPMTFkbbM111hl9NGvuty36G3AONwOPZ8AmZ5s62s6FdMMJqaRkLHPFgfsZGhz_a2jWb_8az3xIO7z6x9v43agyn2w-v9uYNxdf9OvV1435IP4A9QeiPg</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Saparbaev, Murat</creator><creator>Sidorkina, Olga M.</creator><creator>Jurado, Juan</creator><creator>Privezentzev, Cyril V.</creator><creator>Greenberg, Marc M.</creator><creator>Laval, Jacques</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>2002</creationdate><title>Repair of oxidized purines and damaged pyrimidines by E. coli Fpg protein: Different roles of proline 2 and lysine 57 residues</title><author>Saparbaev, Murat ; Sidorkina, Olga M. ; Jurado, Juan ; Privezentzev, Cyril V. ; Greenberg, Marc M. ; Laval, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4161-c16dc4f4592060ce613426da7f77c234b86028183523b7d697c4ec1b37533de23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>8-oxoguanine</topic><topic>AP lyase</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Catalytic Domain</topic><topic>Chemical mutagenesis</topic><topic>DNA repair</topic><topic>DNA Repair - physiology</topic><topic>DNA-Formamidopyrimidine Glycosylase</topic><topic>Escherichia coli Proteins</topic><topic>Fpg</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics</topic><topic>Guanosine - analogs &amp; derivatives</topic><topic>Guanosine - chemistry</topic><topic>Lysine - chemistry</topic><topic>Medical sciences</topic><topic>Microbiology</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutagenesis. Repair</topic><topic>Mutation</topic><topic>N-Glycosyl Hydrolases - genetics</topic><topic>N-Glycosyl Hydrolases - metabolism</topic><topic>Oxidation-Reduction</topic><topic>oxidative damage</topic><topic>Proline - chemistry</topic><topic>Purines - chemistry</topic><topic>Purines - metabolism</topic><topic>Pyrimidines - chemistry</topic><topic>Pyrimidines - metabolism</topic><topic>Schiff Bases</topic><topic>Thymidine - chemistry</topic><topic>Thymidine - metabolism</topic><topic>Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saparbaev, Murat</creatorcontrib><creatorcontrib>Sidorkina, Olga M.</creatorcontrib><creatorcontrib>Jurado, Juan</creatorcontrib><creatorcontrib>Privezentzev, Cyril V.</creatorcontrib><creatorcontrib>Greenberg, Marc M.</creatorcontrib><creatorcontrib>Laval, Jacques</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Environmental and molecular mutagenesis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saparbaev, Murat</au><au>Sidorkina, Olga M.</au><au>Jurado, Juan</au><au>Privezentzev, Cyril V.</au><au>Greenberg, Marc M.</au><au>Laval, Jacques</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Repair of oxidized purines and damaged pyrimidines by E. coli Fpg protein: Different roles of proline 2 and lysine 57 residues</atitle><jtitle>Environmental and molecular mutagenesis</jtitle><addtitle>Environ. Mol. Mutagen</addtitle><date>2002</date><risdate>2002</risdate><volume>39</volume><issue>1</issue><spage>10</spage><epage>17</epage><pages>10-17</pages><issn>0893-6692</issn><eissn>1098-2280</eissn><coden>EMMUEG</coden><abstract>The Escherichia coli Fpg protein is involved in the repair of oxidized purines, including the highly mutagenic 7,8‐dihydro‐8‐oxoguanine (8‐oxoG). The Fpg protein also excises various oxidized pyrimidines with high efficiency. We examined, by targeted mutagenesis, the role of two highly conserved amino acid residues, proline 2 (P2) and lysine 57 (K57), on the catalytic activities of the Fpg protein toward a ring‐fragmentation product of thymine (αRT) and 5,6‐dihydrothymine (dHT). The following E. coli mutant Fpg proteins were investigated: lysine 57 → glycine (FpgK57G), proline 2 → glycine (FpgP2G), and proline 2 → glutamic acid (FpgP2E). The FpgK57G protein had barely detectable αRT and dHT‐DNA glycosylase activities and produced minute amounts of a Schiff‐base complex upon reaction with αRT containing DNA. In contrast, the activity of an FpgP2G mutant toward αRT was comparable to the wild type activity and produced a Schiff‐base complex with this substrate. FpgP2E was completely inactive in all the assays, in contrast, to the other mutants. The crystal structure of a homologous Fpg protein from an extreme thermophile, Thermus thermophilus HB8, reveals that it is composed of two distinct domains connected by a flexible hinge (Sugahara et al. [2000]: EMBO J 19:3857–3869). The N‐terminal proline, one primary residue for enzymatic catalysis, is positioned at the bottom of a cleft in close proximity to lysine 52 (analogous to K57 of the E. coli Fpg). Based on the biochemical assays, together with the crystal structure of T. thermophilus HB8 Fpg protein, we propose a two‐nucleophile model for the enzymatic catalysis. Environ. Mol. Mutagen. 39:10–17, 2002 © 2002 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>11813291</pmid><doi>10.1002/em.10041</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6692
ispartof Environmental and molecular mutagenesis, 2002, Vol.39 (1), p.10-17
issn 0893-6692
1098-2280
language eng
recordid cdi_proquest_miscellaneous_18480179
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 8-oxoguanine
AP lyase
Bacteriology
Biological and medical sciences
Catalytic Domain
Chemical mutagenesis
DNA repair
DNA Repair - physiology
DNA-Formamidopyrimidine Glycosylase
Escherichia coli Proteins
Fpg
Fundamental and applied biological sciences. Psychology
Genetics
Guanosine - analogs & derivatives
Guanosine - chemistry
Lysine - chemistry
Medical sciences
Microbiology
Molecular and cellular biology
Molecular genetics
Mutagenesis. Repair
Mutation
N-Glycosyl Hydrolases - genetics
N-Glycosyl Hydrolases - metabolism
Oxidation-Reduction
oxidative damage
Proline - chemistry
Purines - chemistry
Purines - metabolism
Pyrimidines - chemistry
Pyrimidines - metabolism
Schiff Bases
Thymidine - chemistry
Thymidine - metabolism
Toxicology
title Repair of oxidized purines and damaged pyrimidines by E. coli Fpg protein: Different roles of proline 2 and lysine 57 residues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A23%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Repair%20of%20oxidized%20purines%20and%20damaged%20pyrimidines%20by%20E.%20coli%20Fpg%20protein:%20Different%20roles%20of%20proline%202%20and%20lysine%2057%20residues&rft.jtitle=Environmental%20and%20molecular%20mutagenesis&rft.au=Saparbaev,%20Murat&rft.date=2002&rft.volume=39&rft.issue=1&rft.spage=10&rft.epage=17&rft.pages=10-17&rft.issn=0893-6692&rft.eissn=1098-2280&rft.coden=EMMUEG&rft_id=info:doi/10.1002/em.10041&rft_dat=%3Cproquest_cross%3E18480179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18480179&rft_id=info:pmid/11813291&rfr_iscdi=true