Stand transpiration and sapflow density in relation to weather, soil moisture and stand characteristics
Sapflow density was measured in six stands in a boreal forest in central Sweden, to assess its dependence on soil moisture and stand characteristics. The stands were mixed and pure Scots pine and Norway spruce stands, which were between 34 and 105 years old. Sapflow was measured in 12 trees per stan...
Gespeichert in:
Veröffentlicht in: | Basic and Applied Ecology 2002, Vol.3 (3), p.229-243 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 243 |
---|---|
container_issue | 3 |
container_start_page | 229 |
container_title | Basic and Applied Ecology |
container_volume | 3 |
creator | Lundblad, Mattias Lindroth, Anders |
description | Sapflow density was measured in six stands in a boreal forest in central Sweden, to assess its dependence on soil moisture and stand characteristics. The stands were mixed and pure Scots pine and Norway spruce stands, which were between 34 and 105 years old. Sapflow was measured in 12 trees per stand using the Granier method during two contrasting growing seasons; one warm and dry and one wet and cool. The canopy conductance of the stands was estimated by the inverse of the Penman-Monteith equation, using time-lag-adjusted sapflow as input. Maximum canopy conductance varied between 8 mm s
−1 and 88 mm s
−1 for the stand with the lowest and highest conductance, respectively. Transpiration was higher in the dry, warm season, mean values for the different stands ranging between 1.30 to 4.64 mm day
−1 during July to September. The corresponding range in the wet, cool season was 0.95 to 2.65 mm day
−1. Besides climatic factors, stand age, stem density and diameter explained most of the variation in sapflow density. By use of multiple regression analysis for 5-day periods it was possible to estimate sapflow density and transpiration for a larger area of the forest. This upscaled areal transpiration was compared with evaporation measured by an eddy-correlation system located centrally in the area. It was shown that areal transpiration constituted 78% of total evaporation in the warm, dry season and 52% in the wet, cool season. It was not possible to establish with confidence a critical limit for soil water at which transpiration began to be reduced, mainly because of wide scatter in the relationship between potential and actual transpiration.
Die Saftflussdichte wurde in sechs Beständen des borealen Waldes Zentralschwedens gemessen, um ihre Abhängigkeit von der Bodenfeuchte und den Bestandseigenschaften zu beurteilen. Die Bestände waren reine und gemischte Bestände von Waldkiefer und Fichte, zwischen 34 und 105 Jahre alt. Der Saftfluss wurde mit der Granier-Methode an 12 Bäumen pro Bestand in zwei unterschiedlichen Wachstums-Perioden gemessen: eine warme, trockene und eine nasse, kühle Saison. Die Kronendachleitfähigkeit wurde mit der inversen Penman-Monteith-Gleichung unter Verwendung eines verzögerungskorrigierten Saftflusses als Eingabe abgeschätzt. Die maximale Kronendachleitfähigkeit der Bestände variierte zwischen 8 mm s
−1 bei geringster und 88 mm s
−1 bei höchster Leitfähigkeit. Die Transpiration in der trockenen, warmen Saison im Zeitraum Juli bis Septem |
doi_str_mv | 10.1078/1439-1791-00099 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18478244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S143917910470081X</els_id><sourcerecordid>18478244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-1521cdc42b57db395c841051e784f5462b653c63704e2d164cb3c7a63b1c69cd3</originalsourceid><addsrcrecordid>eNp1Ub9v1TAQzlCkltKZNRMTob7YjuMRVUCRnsQAzJZ9PlNXeXGwHZ7635PXoG4Mn06678dJ9zXNW2AfgKnxFgTXHSgNHWNM64vm6mVz2bwu5ZExEIyPV82v79XOvq3ZzmWJ2daY5va8KXYJUzq1nuYS61Mb5zbTtPM1tSey9YHy-7akOLXHFEtdM-3O50R8sNlipbwxEcub5lWwU6Gbf_O6-fn504-7--7w7cvXu4-HDoWUtQPZA3oUvZPKO64ljgKYBFKjCFIMvRskx4ErJqj3MAh0HJUduAMcNHp-3Rz23HKiZXVmyfFo85NJNpppXTa4DaaQcSGMwVprUPHeCFDBaMG9wRAASGpwHra4d3vcktPvlUo1x1iQpsnOlNZiYBRq7IXYhLe7EHMqJVN4uQzMnDsx5wbMuQHz3Mnm0LuDtnf8iZRNwUgzko-ZsBqf4n-9fwHB2JUk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18478244</pqid></control><display><type>article</type><title>Stand transpiration and sapflow density in relation to weather, soil moisture and stand characteristics</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lundblad, Mattias ; Lindroth, Anders</creator><creatorcontrib>Lundblad, Mattias ; Lindroth, Anders</creatorcontrib><description>Sapflow density was measured in six stands in a boreal forest in central Sweden, to assess its dependence on soil moisture and stand characteristics. The stands were mixed and pure Scots pine and Norway spruce stands, which were between 34 and 105 years old. Sapflow was measured in 12 trees per stand using the Granier method during two contrasting growing seasons; one warm and dry and one wet and cool. The canopy conductance of the stands was estimated by the inverse of the Penman-Monteith equation, using time-lag-adjusted sapflow as input. Maximum canopy conductance varied between 8 mm s
−1 and 88 mm s
−1 for the stand with the lowest and highest conductance, respectively. Transpiration was higher in the dry, warm season, mean values for the different stands ranging between 1.30 to 4.64 mm day
−1 during July to September. The corresponding range in the wet, cool season was 0.95 to 2.65 mm day
−1. Besides climatic factors, stand age, stem density and diameter explained most of the variation in sapflow density. By use of multiple regression analysis for 5-day periods it was possible to estimate sapflow density and transpiration for a larger area of the forest. This upscaled areal transpiration was compared with evaporation measured by an eddy-correlation system located centrally in the area. It was shown that areal transpiration constituted 78% of total evaporation in the warm, dry season and 52% in the wet, cool season. It was not possible to establish with confidence a critical limit for soil water at which transpiration began to be reduced, mainly because of wide scatter in the relationship between potential and actual transpiration.
Die Saftflussdichte wurde in sechs Beständen des borealen Waldes Zentralschwedens gemessen, um ihre Abhängigkeit von der Bodenfeuchte und den Bestandseigenschaften zu beurteilen. Die Bestände waren reine und gemischte Bestände von Waldkiefer und Fichte, zwischen 34 und 105 Jahre alt. Der Saftfluss wurde mit der Granier-Methode an 12 Bäumen pro Bestand in zwei unterschiedlichen Wachstums-Perioden gemessen: eine warme, trockene und eine nasse, kühle Saison. Die Kronendachleitfähigkeit wurde mit der inversen Penman-Monteith-Gleichung unter Verwendung eines verzögerungskorrigierten Saftflusses als Eingabe abgeschätzt. Die maximale Kronendachleitfähigkeit der Bestände variierte zwischen 8 mm s
−1 bei geringster und 88 mm s
−1 bei höchster Leitfähigkeit. Die Transpiration in der trockenen, warmen Saison im Zeitraum Juli bis September war mit Mittelwerten zwischen 1.30 und 4.64 mm Tag
−1 höher. Die entsprechende Spannweite in der nassen, kalten Saison war 0.95 bis 2.65 mm Tag
−1. Neben den klimatischen Faktoren erklärten Bestandsalter, Stammdichte und -durchmesser den größten Teil der Variation in der Saftflussdichte. Unter Verwendung einer multiplen Regressionsanalyse für 5-Tages-Zeiträume war es möglich, Saftflussdichte und Transpiration für ein größeres Areal des Waldes abzuschätzen. Diese hochskalierte Areal-Transpiration wurde mit der Verdunstung verglichen, die mit einem “eddy correlation”-System im Zentrum des Areals gemessen wurde. Es wurde gezeigt, dass die Areal-Transpiration in der warmen, trockenen Saison 78% und in der nassen, kalten Saison 52% der gesamten Verdunstung ausmachte. Hauptsächlich aufgrund der weiten Streuung in der Beziehung zwischen potentieller und tatsächlicher Transpiration war es nicht möglich mit Sicherheit ein kritisches Limit für das Bodenwasser zu finden, bei dem die Transpiration reduziert wurde.</description><identifier>ISSN: 1439-1791</identifier><identifier>ISSN: 1618-0089</identifier><identifier>DOI: 10.1078/1439-1791-00099</identifier><language>eng</language><publisher>Elsevier GmbH</publisher><subject>areal transpiration ; boreal forest ; coupling factor ; Earth and Related Environmental Sciences ; Geovetenskap och miljövetenskap ; heat dissipation ; Lohammar equation ; Natural Sciences ; Naturgeografi ; Naturvetenskap ; Physical Geography ; Picea abies ; Pinus sylvestris</subject><ispartof>Basic and Applied Ecology, 2002, Vol.3 (3), p.229-243</ispartof><rights>2002 Urban & Fischer Verlag</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-1521cdc42b57db395c841051e784f5462b653c63704e2d164cb3c7a63b1c69cd3</citedby><cites>FETCH-LOGICAL-c455t-1521cdc42b57db395c841051e784f5462b653c63704e2d164cb3c7a63b1c69cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1078/1439-1791-00099$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,882,3537,4010,27904,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://lup.lub.lu.se/record/331815$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lundblad, Mattias</creatorcontrib><creatorcontrib>Lindroth, Anders</creatorcontrib><title>Stand transpiration and sapflow density in relation to weather, soil moisture and stand characteristics</title><title>Basic and Applied Ecology</title><description>Sapflow density was measured in six stands in a boreal forest in central Sweden, to assess its dependence on soil moisture and stand characteristics. The stands were mixed and pure Scots pine and Norway spruce stands, which were between 34 and 105 years old. Sapflow was measured in 12 trees per stand using the Granier method during two contrasting growing seasons; one warm and dry and one wet and cool. The canopy conductance of the stands was estimated by the inverse of the Penman-Monteith equation, using time-lag-adjusted sapflow as input. Maximum canopy conductance varied between 8 mm s
−1 and 88 mm s
−1 for the stand with the lowest and highest conductance, respectively. Transpiration was higher in the dry, warm season, mean values for the different stands ranging between 1.30 to 4.64 mm day
−1 during July to September. The corresponding range in the wet, cool season was 0.95 to 2.65 mm day
−1. Besides climatic factors, stand age, stem density and diameter explained most of the variation in sapflow density. By use of multiple regression analysis for 5-day periods it was possible to estimate sapflow density and transpiration for a larger area of the forest. This upscaled areal transpiration was compared with evaporation measured by an eddy-correlation system located centrally in the area. It was shown that areal transpiration constituted 78% of total evaporation in the warm, dry season and 52% in the wet, cool season. It was not possible to establish with confidence a critical limit for soil water at which transpiration began to be reduced, mainly because of wide scatter in the relationship between potential and actual transpiration.
Die Saftflussdichte wurde in sechs Beständen des borealen Waldes Zentralschwedens gemessen, um ihre Abhängigkeit von der Bodenfeuchte und den Bestandseigenschaften zu beurteilen. Die Bestände waren reine und gemischte Bestände von Waldkiefer und Fichte, zwischen 34 und 105 Jahre alt. Der Saftfluss wurde mit der Granier-Methode an 12 Bäumen pro Bestand in zwei unterschiedlichen Wachstums-Perioden gemessen: eine warme, trockene und eine nasse, kühle Saison. Die Kronendachleitfähigkeit wurde mit der inversen Penman-Monteith-Gleichung unter Verwendung eines verzögerungskorrigierten Saftflusses als Eingabe abgeschätzt. Die maximale Kronendachleitfähigkeit der Bestände variierte zwischen 8 mm s
−1 bei geringster und 88 mm s
−1 bei höchster Leitfähigkeit. Die Transpiration in der trockenen, warmen Saison im Zeitraum Juli bis September war mit Mittelwerten zwischen 1.30 und 4.64 mm Tag
−1 höher. Die entsprechende Spannweite in der nassen, kalten Saison war 0.95 bis 2.65 mm Tag
−1. Neben den klimatischen Faktoren erklärten Bestandsalter, Stammdichte und -durchmesser den größten Teil der Variation in der Saftflussdichte. Unter Verwendung einer multiplen Regressionsanalyse für 5-Tages-Zeiträume war es möglich, Saftflussdichte und Transpiration für ein größeres Areal des Waldes abzuschätzen. Diese hochskalierte Areal-Transpiration wurde mit der Verdunstung verglichen, die mit einem “eddy correlation”-System im Zentrum des Areals gemessen wurde. Es wurde gezeigt, dass die Areal-Transpiration in der warmen, trockenen Saison 78% und in der nassen, kalten Saison 52% der gesamten Verdunstung ausmachte. Hauptsächlich aufgrund der weiten Streuung in der Beziehung zwischen potentieller und tatsächlicher Transpiration war es nicht möglich mit Sicherheit ein kritisches Limit für das Bodenwasser zu finden, bei dem die Transpiration reduziert wurde.</description><subject>areal transpiration</subject><subject>boreal forest</subject><subject>coupling factor</subject><subject>Earth and Related Environmental Sciences</subject><subject>Geovetenskap och miljövetenskap</subject><subject>heat dissipation</subject><subject>Lohammar equation</subject><subject>Natural Sciences</subject><subject>Naturgeografi</subject><subject>Naturvetenskap</subject><subject>Physical Geography</subject><subject>Picea abies</subject><subject>Pinus sylvestris</subject><issn>1439-1791</issn><issn>1618-0089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1Ub9v1TAQzlCkltKZNRMTob7YjuMRVUCRnsQAzJZ9PlNXeXGwHZ7635PXoG4Mn06678dJ9zXNW2AfgKnxFgTXHSgNHWNM64vm6mVz2bwu5ZExEIyPV82v79XOvq3ZzmWJ2daY5va8KXYJUzq1nuYS61Mb5zbTtPM1tSey9YHy-7akOLXHFEtdM-3O50R8sNlipbwxEcub5lWwU6Gbf_O6-fn504-7--7w7cvXu4-HDoWUtQPZA3oUvZPKO64ljgKYBFKjCFIMvRskx4ErJqj3MAh0HJUduAMcNHp-3Rz23HKiZXVmyfFo85NJNpppXTa4DaaQcSGMwVprUPHeCFDBaMG9wRAASGpwHra4d3vcktPvlUo1x1iQpsnOlNZiYBRq7IXYhLe7EHMqJVN4uQzMnDsx5wbMuQHz3Mnm0LuDtnf8iZRNwUgzko-ZsBqf4n-9fwHB2JUk</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Lundblad, Mattias</creator><creator>Lindroth, Anders</creator><general>Elsevier GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D95</scope></search><sort><creationdate>2002</creationdate><title>Stand transpiration and sapflow density in relation to weather, soil moisture and stand characteristics</title><author>Lundblad, Mattias ; Lindroth, Anders</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-1521cdc42b57db395c841051e784f5462b653c63704e2d164cb3c7a63b1c69cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>areal transpiration</topic><topic>boreal forest</topic><topic>coupling factor</topic><topic>Earth and Related Environmental Sciences</topic><topic>Geovetenskap och miljövetenskap</topic><topic>heat dissipation</topic><topic>Lohammar equation</topic><topic>Natural Sciences</topic><topic>Naturgeografi</topic><topic>Naturvetenskap</topic><topic>Physical Geography</topic><topic>Picea abies</topic><topic>Pinus sylvestris</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lundblad, Mattias</creatorcontrib><creatorcontrib>Lindroth, Anders</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Lunds universitet</collection><jtitle>Basic and Applied Ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lundblad, Mattias</au><au>Lindroth, Anders</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stand transpiration and sapflow density in relation to weather, soil moisture and stand characteristics</atitle><jtitle>Basic and Applied Ecology</jtitle><date>2002</date><risdate>2002</risdate><volume>3</volume><issue>3</issue><spage>229</spage><epage>243</epage><pages>229-243</pages><issn>1439-1791</issn><issn>1618-0089</issn><abstract>Sapflow density was measured in six stands in a boreal forest in central Sweden, to assess its dependence on soil moisture and stand characteristics. The stands were mixed and pure Scots pine and Norway spruce stands, which were between 34 and 105 years old. Sapflow was measured in 12 trees per stand using the Granier method during two contrasting growing seasons; one warm and dry and one wet and cool. The canopy conductance of the stands was estimated by the inverse of the Penman-Monteith equation, using time-lag-adjusted sapflow as input. Maximum canopy conductance varied between 8 mm s
−1 and 88 mm s
−1 for the stand with the lowest and highest conductance, respectively. Transpiration was higher in the dry, warm season, mean values for the different stands ranging between 1.30 to 4.64 mm day
−1 during July to September. The corresponding range in the wet, cool season was 0.95 to 2.65 mm day
−1. Besides climatic factors, stand age, stem density and diameter explained most of the variation in sapflow density. By use of multiple regression analysis for 5-day periods it was possible to estimate sapflow density and transpiration for a larger area of the forest. This upscaled areal transpiration was compared with evaporation measured by an eddy-correlation system located centrally in the area. It was shown that areal transpiration constituted 78% of total evaporation in the warm, dry season and 52% in the wet, cool season. It was not possible to establish with confidence a critical limit for soil water at which transpiration began to be reduced, mainly because of wide scatter in the relationship between potential and actual transpiration.
Die Saftflussdichte wurde in sechs Beständen des borealen Waldes Zentralschwedens gemessen, um ihre Abhängigkeit von der Bodenfeuchte und den Bestandseigenschaften zu beurteilen. Die Bestände waren reine und gemischte Bestände von Waldkiefer und Fichte, zwischen 34 und 105 Jahre alt. Der Saftfluss wurde mit der Granier-Methode an 12 Bäumen pro Bestand in zwei unterschiedlichen Wachstums-Perioden gemessen: eine warme, trockene und eine nasse, kühle Saison. Die Kronendachleitfähigkeit wurde mit der inversen Penman-Monteith-Gleichung unter Verwendung eines verzögerungskorrigierten Saftflusses als Eingabe abgeschätzt. Die maximale Kronendachleitfähigkeit der Bestände variierte zwischen 8 mm s
−1 bei geringster und 88 mm s
−1 bei höchster Leitfähigkeit. Die Transpiration in der trockenen, warmen Saison im Zeitraum Juli bis September war mit Mittelwerten zwischen 1.30 und 4.64 mm Tag
−1 höher. Die entsprechende Spannweite in der nassen, kalten Saison war 0.95 bis 2.65 mm Tag
−1. Neben den klimatischen Faktoren erklärten Bestandsalter, Stammdichte und -durchmesser den größten Teil der Variation in der Saftflussdichte. Unter Verwendung einer multiplen Regressionsanalyse für 5-Tages-Zeiträume war es möglich, Saftflussdichte und Transpiration für ein größeres Areal des Waldes abzuschätzen. Diese hochskalierte Areal-Transpiration wurde mit der Verdunstung verglichen, die mit einem “eddy correlation”-System im Zentrum des Areals gemessen wurde. Es wurde gezeigt, dass die Areal-Transpiration in der warmen, trockenen Saison 78% und in der nassen, kalten Saison 52% der gesamten Verdunstung ausmachte. Hauptsächlich aufgrund der weiten Streuung in der Beziehung zwischen potentieller und tatsächlicher Transpiration war es nicht möglich mit Sicherheit ein kritisches Limit für das Bodenwasser zu finden, bei dem die Transpiration reduziert wurde.</abstract><pub>Elsevier GmbH</pub><doi>10.1078/1439-1791-00099</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-1791 |
ispartof | Basic and Applied Ecology, 2002, Vol.3 (3), p.229-243 |
issn | 1439-1791 1618-0089 |
language | eng |
recordid | cdi_proquest_miscellaneous_18478244 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | areal transpiration boreal forest coupling factor Earth and Related Environmental Sciences Geovetenskap och miljövetenskap heat dissipation Lohammar equation Natural Sciences Naturgeografi Naturvetenskap Physical Geography Picea abies Pinus sylvestris |
title | Stand transpiration and sapflow density in relation to weather, soil moisture and stand characteristics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A51%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stand%20transpiration%20and%20sapflow%20density%20in%20relation%20to%20weather,%20soil%20moisture%20and%20stand%20characteristics&rft.jtitle=Basic%20and%20Applied%20Ecology&rft.au=Lundblad,%20Mattias&rft.date=2002&rft.volume=3&rft.issue=3&rft.spage=229&rft.epage=243&rft.pages=229-243&rft.issn=1439-1791&rft_id=info:doi/10.1078/1439-1791-00099&rft_dat=%3Cproquest_swepu%3E18478244%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18478244&rft_id=info:pmid/&rft_els_id=S143917910470081X&rfr_iscdi=true |