Dynamic panels with threshold effect and endogeneity

This paper addresses an important issue of modeling nonlinear asymmetric dynamics and unobserved individual heterogeneity in the threshold panel data framework, simultaneously. As a general approach, we develop the first-differenced GMM estimator, which allows both threshold variable and regressors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2016-12, Vol.195 (2), p.169-186
Hauptverfasser: Seo, Myung Hwan, Shin, Yongcheol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue 2
container_start_page 169
container_title Journal of econometrics
container_volume 195
creator Seo, Myung Hwan
Shin, Yongcheol
description This paper addresses an important issue of modeling nonlinear asymmetric dynamics and unobserved individual heterogeneity in the threshold panel data framework, simultaneously. As a general approach, we develop the first-differenced GMM estimator, which allows both threshold variable and regressors to be endogenous. When the threshold variable becomes strictly exogenous, we propose a more efficient two-step least squares estimator. We provide asymptotic theory and develop the testing procedure for threshold effects and the threshold variable exogeneity. Monte Carlo studies provide a support for theoretical predictions. We present an empirical application investigating an asymmetric sensitivity of investment to cash flows.
doi_str_mv 10.1016/j.jeconom.2016.03.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1847489228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407616301506</els_id><sourcerecordid>1847489228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-85b08f95324e6516e147d3e32fbbabd19b265260e336b284feaaf458e1a447633</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOF4eQSi4cdOae9OVyHiFATe6Dml64qR0mjHpKPP2ZphZuXF1zoHv_zl8CF0RXBFM5G1f9WDDGFYVzWeFWYWxOEIzompaStWIYzTDDPOS41qeorOUepwJrtgM8YftaFbeFmszwpCKHz8ti2kZIS3D0BXgHNipMGNexy58wgh-2l6gE2eGBJeHeY4-nh7f5y_l4u35dX6_KC1XZCqVaLFyjWCUgxREAuF1x4BR17am7UjTUimoxMCYbKniDoxxXCgghvNaMnaObva96xi-NpAmvfLJwjDkX8MmaaJ4zVVDqcro9R-0D5s45u8yxRgmjDQkU2JP2RhSiuD0OvqViVtNsN651L0-uNQ7lxoznU3l3N0-lxXBt4eok_UwWuh8zH50F_w_Db-o7n36</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1833013191</pqid></control><display><type>article</type><title>Dynamic panels with threshold effect and endogeneity</title><source>Access via ScienceDirect (Elsevier)</source><creator>Seo, Myung Hwan ; Shin, Yongcheol</creator><creatorcontrib>Seo, Myung Hwan ; Shin, Yongcheol</creatorcontrib><description>This paper addresses an important issue of modeling nonlinear asymmetric dynamics and unobserved individual heterogeneity in the threshold panel data framework, simultaneously. As a general approach, we develop the first-differenced GMM estimator, which allows both threshold variable and regressors to be endogenous. When the threshold variable becomes strictly exogenous, we propose a more efficient two-step least squares estimator. We provide asymptotic theory and develop the testing procedure for threshold effects and the threshold variable exogeneity. Monte Carlo studies provide a support for theoretical predictions. We present an empirical application investigating an asymmetric sensitivity of investment to cash flows.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2016.03.005</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic methods ; Dynamic panel threshold models ; Econometrics ; Endogenous threshold effects and regressors ; Estimating techniques ; FD-GMM and FD-2SLS ; Generalized method of moments ; Investment ; Linearity and exogeneity tests ; Mathematical models ; Monte Carlo simulation ; Predictions ; Studies</subject><ispartof>Journal of econometrics, 2016-12, Vol.195 (2), p.169-186</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Dec 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-85b08f95324e6516e147d3e32fbbabd19b265260e336b284feaaf458e1a447633</citedby><cites>FETCH-LOGICAL-c481t-85b08f95324e6516e147d3e32fbbabd19b265260e336b284feaaf458e1a447633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2016.03.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Seo, Myung Hwan</creatorcontrib><creatorcontrib>Shin, Yongcheol</creatorcontrib><title>Dynamic panels with threshold effect and endogeneity</title><title>Journal of econometrics</title><description>This paper addresses an important issue of modeling nonlinear asymmetric dynamics and unobserved individual heterogeneity in the threshold panel data framework, simultaneously. As a general approach, we develop the first-differenced GMM estimator, which allows both threshold variable and regressors to be endogenous. When the threshold variable becomes strictly exogenous, we propose a more efficient two-step least squares estimator. We provide asymptotic theory and develop the testing procedure for threshold effects and the threshold variable exogeneity. Monte Carlo studies provide a support for theoretical predictions. We present an empirical application investigating an asymmetric sensitivity of investment to cash flows.</description><subject>Asymptotic methods</subject><subject>Dynamic panel threshold models</subject><subject>Econometrics</subject><subject>Endogenous threshold effects and regressors</subject><subject>Estimating techniques</subject><subject>FD-GMM and FD-2SLS</subject><subject>Generalized method of moments</subject><subject>Investment</subject><subject>Linearity and exogeneity tests</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>Predictions</subject><subject>Studies</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOF4eQSi4cdOae9OVyHiFATe6Dml64qR0mjHpKPP2ZphZuXF1zoHv_zl8CF0RXBFM5G1f9WDDGFYVzWeFWYWxOEIzompaStWIYzTDDPOS41qeorOUepwJrtgM8YftaFbeFmszwpCKHz8ti2kZIS3D0BXgHNipMGNexy58wgh-2l6gE2eGBJeHeY4-nh7f5y_l4u35dX6_KC1XZCqVaLFyjWCUgxREAuF1x4BR17am7UjTUimoxMCYbKniDoxxXCgghvNaMnaObva96xi-NpAmvfLJwjDkX8MmaaJ4zVVDqcro9R-0D5s45u8yxRgmjDQkU2JP2RhSiuD0OvqViVtNsN651L0-uNQ7lxoznU3l3N0-lxXBt4eok_UwWuh8zH50F_w_Db-o7n36</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Seo, Myung Hwan</creator><creator>Shin, Yongcheol</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20161201</creationdate><title>Dynamic panels with threshold effect and endogeneity</title><author>Seo, Myung Hwan ; Shin, Yongcheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-85b08f95324e6516e147d3e32fbbabd19b265260e336b284feaaf458e1a447633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic methods</topic><topic>Dynamic panel threshold models</topic><topic>Econometrics</topic><topic>Endogenous threshold effects and regressors</topic><topic>Estimating techniques</topic><topic>FD-GMM and FD-2SLS</topic><topic>Generalized method of moments</topic><topic>Investment</topic><topic>Linearity and exogeneity tests</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>Predictions</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Myung Hwan</creatorcontrib><creatorcontrib>Shin, Yongcheol</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Myung Hwan</au><au>Shin, Yongcheol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic panels with threshold effect and endogeneity</atitle><jtitle>Journal of econometrics</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>195</volume><issue>2</issue><spage>169</spage><epage>186</epage><pages>169-186</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>This paper addresses an important issue of modeling nonlinear asymmetric dynamics and unobserved individual heterogeneity in the threshold panel data framework, simultaneously. As a general approach, we develop the first-differenced GMM estimator, which allows both threshold variable and regressors to be endogenous. When the threshold variable becomes strictly exogenous, we propose a more efficient two-step least squares estimator. We provide asymptotic theory and develop the testing procedure for threshold effects and the threshold variable exogeneity. Monte Carlo studies provide a support for theoretical predictions. We present an empirical application investigating an asymmetric sensitivity of investment to cash flows.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2016.03.005</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2016-12, Vol.195 (2), p.169-186
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_miscellaneous_1847489228
source Access via ScienceDirect (Elsevier)
subjects Asymptotic methods
Dynamic panel threshold models
Econometrics
Endogenous threshold effects and regressors
Estimating techniques
FD-GMM and FD-2SLS
Generalized method of moments
Investment
Linearity and exogeneity tests
Mathematical models
Monte Carlo simulation
Predictions
Studies
title Dynamic panels with threshold effect and endogeneity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20panels%20with%20threshold%20effect%20and%20endogeneity&rft.jtitle=Journal%20of%20econometrics&rft.au=Seo,%20Myung%20Hwan&rft.date=2016-12-01&rft.volume=195&rft.issue=2&rft.spage=169&rft.epage=186&rft.pages=169-186&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2016.03.005&rft_dat=%3Cproquest_cross%3E1847489228%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1833013191&rft_id=info:pmid/&rft_els_id=S0304407616301506&rfr_iscdi=true