Exploring the path to big data analytics success in healthcare

Although big data analytics have tremendous benefits for healthcare organizations, extant research has paid insufficient attention to the exploration of its business value. In order to bridge this knowledge gap, this study proposes a big data analytics-enabled business value model in which we use th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of business research 2017-01, Vol.70, p.287-299
Hauptverfasser: Wang, Yichuan, Hajli, Nick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue
container_start_page 287
container_title Journal of business research
container_volume 70
creator Wang, Yichuan
Hajli, Nick
description Although big data analytics have tremendous benefits for healthcare organizations, extant research has paid insufficient attention to the exploration of its business value. In order to bridge this knowledge gap, this study proposes a big data analytics-enabled business value model in which we use the resource-based theory (RBT) and capability building view to explain how big data analytics capabilities can be developed and what potential benefits can be obtained by these capabilities in the health care industries. Using this model, we investigate 109 case descriptions, covering 63 healthcare organizations to explore the causal relationships between the big data analytics capabilities and business value and the path-to-value chains for big data analytics success. Our findings provide new insights to healthcare practitioners on how to constitute big data analytics capabilities for business transformation and offer an empirical basis that can stimulate a more detailed investigation of big data analytics implementation.
doi_str_mv 10.1016/j.jbusres.2016.08.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1847486709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0148296316304891</els_id><sourcerecordid>1847486709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-d602c445e7c2f249171eb1044861c4be7e6f16e84dd5164837d6d2c1ef7eb6443</originalsourceid><addsrcrecordid>eNqFkM9LwzAYhoMoOKd_ghDw4qU1SbMkvSgi8wcMvOg5pOnXNaVrZ5KK--_N2E5ePH188LwvvA9C15TklFBx1-VdNQUPIWfpzYnKCWEnaEaVLDJZSnWKZoRylbFSFOfoIoSOJIIQNUP3y59tP3o3rHFsAW9NbHEcceXWuDbRYDOYfhedDThM1kII2A24BdPH1hoPl-isMX2Aq-Odo8_n5cfTa7Z6f3l7elxllhMas1oQZjlfgLSsYbykkkJFCedKUMsrkCAaKkDxul5QwVUha1EzS6GRUAnOizm6PfRu_fg1QYh644KFvjcDjFPQVHGZyiQpE3rzB-3GyacZe6qQqiwLxRK1OFDWjyG5a_TWu43xO02J3lvVnT5a1XurmiidnKXcwyEHae23A6-DdTBYqJ0HG3U9un8afgFGUoG3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837899382</pqid></control><display><type>article</type><title>Exploring the path to big data analytics success in healthcare</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Yichuan ; Hajli, Nick</creator><creatorcontrib>Wang, Yichuan ; Hajli, Nick</creatorcontrib><description>Although big data analytics have tremendous benefits for healthcare organizations, extant research has paid insufficient attention to the exploration of its business value. In order to bridge this knowledge gap, this study proposes a big data analytics-enabled business value model in which we use the resource-based theory (RBT) and capability building view to explain how big data analytics capabilities can be developed and what potential benefits can be obtained by these capabilities in the health care industries. Using this model, we investigate 109 case descriptions, covering 63 healthcare organizations to explore the causal relationships between the big data analytics capabilities and business value and the path-to-value chains for big data analytics success. Our findings provide new insights to healthcare practitioners on how to constitute big data analytics capabilities for business transformation and offer an empirical basis that can stimulate a more detailed investigation of big data analytics implementation.</description><identifier>ISSN: 0148-2963</identifier><identifier>EISSN: 1873-7978</identifier><identifier>DOI: 10.1016/j.jbusres.2016.08.002</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Big Data ; Big data analytics ; Business value ; Capability building view ; Causality ; Data analysis ; Health care industries ; Health care industry ; Information technology source management ; Resource-based theory ; Studies ; Valuation</subject><ispartof>Journal of business research, 2017-01, Vol.70, p.287-299</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright Elsevier Sequoia S.A. Jan 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-d602c445e7c2f249171eb1044861c4be7e6f16e84dd5164837d6d2c1ef7eb6443</citedby><cites>FETCH-LOGICAL-c401t-d602c445e7c2f249171eb1044861c4be7e6f16e84dd5164837d6d2c1ef7eb6443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jbusres.2016.08.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, Yichuan</creatorcontrib><creatorcontrib>Hajli, Nick</creatorcontrib><title>Exploring the path to big data analytics success in healthcare</title><title>Journal of business research</title><description>Although big data analytics have tremendous benefits for healthcare organizations, extant research has paid insufficient attention to the exploration of its business value. In order to bridge this knowledge gap, this study proposes a big data analytics-enabled business value model in which we use the resource-based theory (RBT) and capability building view to explain how big data analytics capabilities can be developed and what potential benefits can be obtained by these capabilities in the health care industries. Using this model, we investigate 109 case descriptions, covering 63 healthcare organizations to explore the causal relationships between the big data analytics capabilities and business value and the path-to-value chains for big data analytics success. Our findings provide new insights to healthcare practitioners on how to constitute big data analytics capabilities for business transformation and offer an empirical basis that can stimulate a more detailed investigation of big data analytics implementation.</description><subject>Big Data</subject><subject>Big data analytics</subject><subject>Business value</subject><subject>Capability building view</subject><subject>Causality</subject><subject>Data analysis</subject><subject>Health care industries</subject><subject>Health care industry</subject><subject>Information technology source management</subject><subject>Resource-based theory</subject><subject>Studies</subject><subject>Valuation</subject><issn>0148-2963</issn><issn>1873-7978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAYhoMoOKd_ghDw4qU1SbMkvSgi8wcMvOg5pOnXNaVrZ5KK--_N2E5ePH188LwvvA9C15TklFBx1-VdNQUPIWfpzYnKCWEnaEaVLDJZSnWKZoRylbFSFOfoIoSOJIIQNUP3y59tP3o3rHFsAW9NbHEcceXWuDbRYDOYfhedDThM1kII2A24BdPH1hoPl-isMX2Aq-Odo8_n5cfTa7Z6f3l7elxllhMas1oQZjlfgLSsYbykkkJFCedKUMsrkCAaKkDxul5QwVUha1EzS6GRUAnOizm6PfRu_fg1QYh644KFvjcDjFPQVHGZyiQpE3rzB-3GyacZe6qQqiwLxRK1OFDWjyG5a_TWu43xO02J3lvVnT5a1XurmiidnKXcwyEHae23A6-DdTBYqJ0HG3U9un8afgFGUoG3</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Wang, Yichuan</creator><creator>Hajli, Nick</creator><general>Elsevier Inc</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201701</creationdate><title>Exploring the path to big data analytics success in healthcare</title><author>Wang, Yichuan ; Hajli, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-d602c445e7c2f249171eb1044861c4be7e6f16e84dd5164837d6d2c1ef7eb6443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Big Data</topic><topic>Big data analytics</topic><topic>Business value</topic><topic>Capability building view</topic><topic>Causality</topic><topic>Data analysis</topic><topic>Health care industries</topic><topic>Health care industry</topic><topic>Information technology source management</topic><topic>Resource-based theory</topic><topic>Studies</topic><topic>Valuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yichuan</creatorcontrib><creatorcontrib>Hajli, Nick</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of business research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yichuan</au><au>Hajli, Nick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the path to big data analytics success in healthcare</atitle><jtitle>Journal of business research</jtitle><date>2017-01</date><risdate>2017</risdate><volume>70</volume><spage>287</spage><epage>299</epage><pages>287-299</pages><issn>0148-2963</issn><eissn>1873-7978</eissn><abstract>Although big data analytics have tremendous benefits for healthcare organizations, extant research has paid insufficient attention to the exploration of its business value. In order to bridge this knowledge gap, this study proposes a big data analytics-enabled business value model in which we use the resource-based theory (RBT) and capability building view to explain how big data analytics capabilities can be developed and what potential benefits can be obtained by these capabilities in the health care industries. Using this model, we investigate 109 case descriptions, covering 63 healthcare organizations to explore the causal relationships between the big data analytics capabilities and business value and the path-to-value chains for big data analytics success. Our findings provide new insights to healthcare practitioners on how to constitute big data analytics capabilities for business transformation and offer an empirical basis that can stimulate a more detailed investigation of big data analytics implementation.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jbusres.2016.08.002</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-2963
ispartof Journal of business research, 2017-01, Vol.70, p.287-299
issn 0148-2963
1873-7978
language eng
recordid cdi_proquest_miscellaneous_1847486709
source Access via ScienceDirect (Elsevier)
subjects Big Data
Big data analytics
Business value
Capability building view
Causality
Data analysis
Health care industries
Health care industry
Information technology source management
Resource-based theory
Studies
Valuation
title Exploring the path to big data analytics success in healthcare
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20path%20to%20big%20data%20analytics%20success%20in%20healthcare&rft.jtitle=Journal%20of%20business%20research&rft.au=Wang,%20Yichuan&rft.date=2017-01&rft.volume=70&rft.spage=287&rft.epage=299&rft.pages=287-299&rft.issn=0148-2963&rft.eissn=1873-7978&rft_id=info:doi/10.1016/j.jbusres.2016.08.002&rft_dat=%3Cproquest_cross%3E1847486709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837899382&rft_id=info:pmid/&rft_els_id=S0148296316304891&rfr_iscdi=true