Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks: e0147414

Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-01, Vol.11 (1)
Hauptverfasser: Valletta, Elisa, Kucera, Lukas, Prokes, Lubomir, Amato, Filippo, Pivetta, Tiziana, Hampl, Ales, Havel, Josef, Vanhara, Petr
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title PloS one
container_volume 11
creator Valletta, Elisa
Kucera, Lukas
Prokes, Lubomir
Amato, Filippo
Pivetta, Tiziana
Hampl, Ales
Havel, Josef
Vanhara, Petr
description Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general.
doi_str_mv 10.1371/journal.pone.0147414
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1846414612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1846414612</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_18464146123</originalsourceid><addsrcrecordid>eNqVj09Lw0AQxRdBsP75Bh7m6CUxm8S0eitRqWAF0XuZxglu3e7G2dlKP5Nf0qUW754ew_vNvHlKnesi19VYX658ZIc2H7yjvND1uNb1gRrp66rMmrKojtRxCKuiuKomTTNS3_NoxWyQDQpBi9YsGcV4B9NhYI_dO_Se4TmiEyPJ2RDckhCvjfvlfA8tWZs9GpcOsA8BWu8E_4DlFh7S3MmOgzkm4mWgTtivSXgL6N5gymJ60xm08ESRdyJfnj_CDdC-xqk67NEGOtvribq4v3ttZ1l69DNSkMXahC5loCMfw0JP6iatNbqs_oH-AHbua1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846414612</pqid></control><display><type>article</type><title>Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks: e0147414</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Valletta, Elisa ; Kucera, Lukas ; Prokes, Lubomir ; Amato, Filippo ; Pivetta, Tiziana ; Hampl, Ales ; Havel, Josef ; Vanhara, Petr</creator><creatorcontrib>Valletta, Elisa ; Kucera, Lukas ; Prokes, Lubomir ; Amato, Filippo ; Pivetta, Tiziana ; Hampl, Ales ; Havel, Josef ; Vanhara, Petr</creatorcontrib><description>Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general.</description><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0147414</identifier><language>eng</language><ispartof>PloS one, 2016-01, Vol.11 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Valletta, Elisa</creatorcontrib><creatorcontrib>Kucera, Lukas</creatorcontrib><creatorcontrib>Prokes, Lubomir</creatorcontrib><creatorcontrib>Amato, Filippo</creatorcontrib><creatorcontrib>Pivetta, Tiziana</creatorcontrib><creatorcontrib>Hampl, Ales</creatorcontrib><creatorcontrib>Havel, Josef</creatorcontrib><creatorcontrib>Vanhara, Petr</creatorcontrib><title>Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks: e0147414</title><title>PloS one</title><description>Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general.</description><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqVj09Lw0AQxRdBsP75Bh7m6CUxm8S0eitRqWAF0XuZxglu3e7G2dlKP5Nf0qUW754ew_vNvHlKnesi19VYX658ZIc2H7yjvND1uNb1gRrp66rMmrKojtRxCKuiuKomTTNS3_NoxWyQDQpBi9YsGcV4B9NhYI_dO_Se4TmiEyPJ2RDckhCvjfvlfA8tWZs9GpcOsA8BWu8E_4DlFh7S3MmOgzkm4mWgTtivSXgL6N5gymJ60xm08ESRdyJfnj_CDdC-xqk67NEGOtvribq4v3ttZ1l69DNSkMXahC5loCMfw0JP6iatNbqs_oH-AHbua1Q</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Valletta, Elisa</creator><creator>Kucera, Lukas</creator><creator>Prokes, Lubomir</creator><creator>Amato, Filippo</creator><creator>Pivetta, Tiziana</creator><creator>Hampl, Ales</creator><creator>Havel, Josef</creator><creator>Vanhara, Petr</creator><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20160101</creationdate><title>Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks: e0147414</title><author>Valletta, Elisa ; Kucera, Lukas ; Prokes, Lubomir ; Amato, Filippo ; Pivetta, Tiziana ; Hampl, Ales ; Havel, Josef ; Vanhara, Petr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_18464146123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valletta, Elisa</creatorcontrib><creatorcontrib>Kucera, Lukas</creatorcontrib><creatorcontrib>Prokes, Lubomir</creatorcontrib><creatorcontrib>Amato, Filippo</creatorcontrib><creatorcontrib>Pivetta, Tiziana</creatorcontrib><creatorcontrib>Hampl, Ales</creatorcontrib><creatorcontrib>Havel, Josef</creatorcontrib><creatorcontrib>Vanhara, Petr</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valletta, Elisa</au><au>Kucera, Lukas</au><au>Prokes, Lubomir</au><au>Amato, Filippo</au><au>Pivetta, Tiziana</au><au>Hampl, Ales</au><au>Havel, Josef</au><au>Vanhara, Petr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks: e0147414</atitle><jtitle>PloS one</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>11</volume><issue>1</issue><eissn>1932-6203</eissn><abstract>Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general.</abstract><doi>10.1371/journal.pone.0147414</doi></addata></record>
fulltext fulltext
identifier EISSN: 1932-6203
ispartof PloS one, 2016-01, Vol.11 (1)
issn 1932-6203
language eng
recordid cdi_proquest_miscellaneous_1846414612
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
title Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks: e0147414
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20Calibration%20Approach%20for%20Quantitative%20Determination%20of%20Cell-Line%20Cross%20Contamination%20by%20Intact%20Cell%20Mass%20Spectrometry%20and%20Artificial%20Neural%20Networks:%20e0147414&rft.jtitle=PloS%20one&rft.au=Valletta,%20Elisa&rft.date=2016-01-01&rft.volume=11&rft.issue=1&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0147414&rft_dat=%3Cproquest%3E1846414612%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1846414612&rft_id=info:pmid/&rfr_iscdi=true