Mesophilic Acidogenesis of Food Waste-Recycling Wastewater: Effects of Hydraulic Retention Time, pH, and Temperature
The effects of hydraulic retention time (HRT), pH, and operating temperature ( T OP ) on the degradation of food waste-recycling wastewater (FRW) were investigated in laboratory-scale hydrolysis/acidogenesis reactors. Response surface analysis was used to approximate the production of volatile organ...
Gespeichert in:
Veröffentlicht in: | Applied biochemistry and biotechnology 2016-11, Vol.180 (5), p.980-999 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 999 |
---|---|
container_issue | 5 |
container_start_page | 980 |
container_title | Applied biochemistry and biotechnology |
container_volume | 180 |
creator | Han, Gyuseong Shin, Seung Gu Lee, Joonyeob Lee, Changsoo Jo, Minho Hwang, Seokhwan |
description | The effects of hydraulic retention time (HRT), pH, and operating temperature (
T
OP
) on the degradation of food waste-recycling wastewater (FRW) were investigated in laboratory-scale hydrolysis/acidogenesis reactors. Response surface analysis was used to approximate the production of volatile organic acids and degradation of volatile suspended solids (VSS), carbohydrate, protein, and lipid with regard to the independent variables (1 ≤ HRT ≤ 3 days, 4 ≤ pH ≤ 6, 25 ≤
T
OP
≤ 45 °C). Partial cubic models adequately approximated the corresponding response surfaces at
α
|
doi_str_mv | 10.1007/s12010-016-2147-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1846411983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4238416341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-c2efb26e2adeccfe961c98915edebe0726a7e40e4a9a84e9117429a12fcb51f63</originalsourceid><addsrcrecordid>eNqNkd9rFDEQx4Mo9qz-Ab5IwBcfGs3ksj_iWymtJ1SEcuJjyGUnZ8ruZk2ylOtfb86tIoIgeRjCfOYzDF9CXgJ_C5w37xIIDpxxqJkA2bD7R2QFVaUYFwoekxUXzZoJ0aoT8iylW85BtFXzlJyIpryayxXJnzCF6ZvvvaXn1ndhjyMmn2hw9CqEjn41KSO7QXuwvR_3y__OZIzv6aVzaPNPdnPoopmPlhvMOGYfRrr1A57RaXNGzdjRLQ4TRpPniM_JE2f6hC8e6in5cnW5vdiw688fPl6cXzMr2yozK9DtRI3CdGitQ1WDVa2CCjvcIS8XmAYlR2mUaSUqgEYKZUA4u6vA1etT8mbxTjF8nzFlPfhkse_NiGFOGlpZSwDVrv8DFXWtmpYfra__Qm_DHMdySKHWlSpWDoWChbIxpBTR6Sn6wcSDBq6P6eklPV3S08f09H2ZefVgnncDdr8nfsVVALEAqbTGPcY_Vv_T-gM-3aV_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835918401</pqid></control><display><type>article</type><title>Mesophilic Acidogenesis of Food Waste-Recycling Wastewater: Effects of Hydraulic Retention Time, pH, and Temperature</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Han, Gyuseong ; Shin, Seung Gu ; Lee, Joonyeob ; Lee, Changsoo ; Jo, Minho ; Hwang, Seokhwan</creator><creatorcontrib>Han, Gyuseong ; Shin, Seung Gu ; Lee, Joonyeob ; Lee, Changsoo ; Jo, Minho ; Hwang, Seokhwan</creatorcontrib><description>The effects of hydraulic retention time (HRT), pH, and operating temperature (
T
OP
) on the degradation of food waste-recycling wastewater (FRW) were investigated in laboratory-scale hydrolysis/acidogenesis reactors. Response surface analysis was used to approximate the production of volatile organic acids and degradation of volatile suspended solids (VSS), carbohydrate, protein, and lipid with regard to the independent variables (1 ≤ HRT ≤ 3 days, 4 ≤ pH ≤ 6, 25 ≤
T
OP
≤ 45 °C). Partial cubic models adequately approximated the corresponding response surfaces at
α
< 5 %. The physiological conditions for maximum acidification (0.4 g TVFA + EtOH/g VS
added
) and the maximal degradation of VSS (47.5 %), carbohydrate (92.0 %), protein (17.7 %), and lipid (73.7 %) were different. Analysis of variance suggested that pH had a great effect on the responses in most cases, while
T
OP
and HRT, and their interaction, were significant in some cases. Denaturing gradient gel electrophoresis analysis revealed that
Sporanaerobacter acetigenes
,
Lactobacillus
sp., and
Eubacterium pyruvivorans
-like microorganisms might be main contributors to the hydrolysis and acidogenesis of FRW. Biochemical methane potential test confirmed higher methane yield (538.2 mL CH
4
/g VS
added
) from an acidogenic effluent than from raw FRW.</description><identifier>ISSN: 0273-2289</identifier><identifier>EISSN: 1559-0291</identifier><identifier>DOI: 10.1007/s12010-016-2147-z</identifier><identifier>PMID: 27272604</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acidification ; Acids - chemistry ; Bacteria ; Bacteria - genetics ; Bacteria - metabolism ; Biochemistry ; Bioremediation ; Biotechnology ; Carbohydrates - analysis ; Chemistry ; Chemistry and Materials Science ; Denaturing Gradient Gel Electrophoresis ; Eubacterium ; Fatty Acids, Volatile - analysis ; Fermentation ; Food ; Food waste ; Hydrogen-Ion Concentration ; Hydrolysis ; Lactobacillus ; Lipids - analysis ; Methane ; Methane - metabolism ; Microorganisms ; Models, Theoretical ; Organic acids ; Proteins - analysis ; Recycling ; Retention ; Retention time ; RNA, Ribosomal, 16S - genetics ; Suspended solids ; Temperature ; Time Factors ; Variance analysis ; Waste Water ; Water treatment</subject><ispartof>Applied biochemistry and biotechnology, 2016-11, Vol.180 (5), p.980-999</ispartof><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-c2efb26e2adeccfe961c98915edebe0726a7e40e4a9a84e9117429a12fcb51f63</citedby><cites>FETCH-LOGICAL-c485t-c2efb26e2adeccfe961c98915edebe0726a7e40e4a9a84e9117429a12fcb51f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12010-016-2147-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12010-016-2147-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27272604$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Gyuseong</creatorcontrib><creatorcontrib>Shin, Seung Gu</creatorcontrib><creatorcontrib>Lee, Joonyeob</creatorcontrib><creatorcontrib>Lee, Changsoo</creatorcontrib><creatorcontrib>Jo, Minho</creatorcontrib><creatorcontrib>Hwang, Seokhwan</creatorcontrib><title>Mesophilic Acidogenesis of Food Waste-Recycling Wastewater: Effects of Hydraulic Retention Time, pH, and Temperature</title><title>Applied biochemistry and biotechnology</title><addtitle>Appl Biochem Biotechnol</addtitle><addtitle>Appl Biochem Biotechnol</addtitle><description>The effects of hydraulic retention time (HRT), pH, and operating temperature (
T
OP
) on the degradation of food waste-recycling wastewater (FRW) were investigated in laboratory-scale hydrolysis/acidogenesis reactors. Response surface analysis was used to approximate the production of volatile organic acids and degradation of volatile suspended solids (VSS), carbohydrate, protein, and lipid with regard to the independent variables (1 ≤ HRT ≤ 3 days, 4 ≤ pH ≤ 6, 25 ≤
T
OP
≤ 45 °C). Partial cubic models adequately approximated the corresponding response surfaces at
α
< 5 %. The physiological conditions for maximum acidification (0.4 g TVFA + EtOH/g VS
added
) and the maximal degradation of VSS (47.5 %), carbohydrate (92.0 %), protein (17.7 %), and lipid (73.7 %) were different. Analysis of variance suggested that pH had a great effect on the responses in most cases, while
T
OP
and HRT, and their interaction, were significant in some cases. Denaturing gradient gel electrophoresis analysis revealed that
Sporanaerobacter acetigenes
,
Lactobacillus
sp., and
Eubacterium pyruvivorans
-like microorganisms might be main contributors to the hydrolysis and acidogenesis of FRW. Biochemical methane potential test confirmed higher methane yield (538.2 mL CH
4
/g VS
added
) from an acidogenic effluent than from raw FRW.</description><subject>Acidification</subject><subject>Acids - chemistry</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Biochemistry</subject><subject>Bioremediation</subject><subject>Biotechnology</subject><subject>Carbohydrates - analysis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Denaturing Gradient Gel Electrophoresis</subject><subject>Eubacterium</subject><subject>Fatty Acids, Volatile - analysis</subject><subject>Fermentation</subject><subject>Food</subject><subject>Food waste</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>Lactobacillus</subject><subject>Lipids - analysis</subject><subject>Methane</subject><subject>Methane - metabolism</subject><subject>Microorganisms</subject><subject>Models, Theoretical</subject><subject>Organic acids</subject><subject>Proteins - analysis</subject><subject>Recycling</subject><subject>Retention</subject><subject>Retention time</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Suspended solids</subject><subject>Temperature</subject><subject>Time Factors</subject><subject>Variance analysis</subject><subject>Waste Water</subject><subject>Water treatment</subject><issn>0273-2289</issn><issn>1559-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkd9rFDEQx4Mo9qz-Ab5IwBcfGs3ksj_iWymtJ1SEcuJjyGUnZ8ruZk2ylOtfb86tIoIgeRjCfOYzDF9CXgJ_C5w37xIIDpxxqJkA2bD7R2QFVaUYFwoekxUXzZoJ0aoT8iylW85BtFXzlJyIpryayxXJnzCF6ZvvvaXn1ndhjyMmn2hw9CqEjn41KSO7QXuwvR_3y__OZIzv6aVzaPNPdnPoopmPlhvMOGYfRrr1A57RaXNGzdjRLQ4TRpPniM_JE2f6hC8e6in5cnW5vdiw688fPl6cXzMr2yozK9DtRI3CdGitQ1WDVa2CCjvcIS8XmAYlR2mUaSUqgEYKZUA4u6vA1etT8mbxTjF8nzFlPfhkse_NiGFOGlpZSwDVrv8DFXWtmpYfra__Qm_DHMdySKHWlSpWDoWChbIxpBTR6Sn6wcSDBq6P6eklPV3S08f09H2ZefVgnncDdr8nfsVVALEAqbTGPcY_Vv_T-gM-3aV_</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Han, Gyuseong</creator><creator>Shin, Seung Gu</creator><creator>Lee, Joonyeob</creator><creator>Lee, Changsoo</creator><creator>Jo, Minho</creator><creator>Hwang, Seokhwan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20161101</creationdate><title>Mesophilic Acidogenesis of Food Waste-Recycling Wastewater: Effects of Hydraulic Retention Time, pH, and Temperature</title><author>Han, Gyuseong ; Shin, Seung Gu ; Lee, Joonyeob ; Lee, Changsoo ; Jo, Minho ; Hwang, Seokhwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-c2efb26e2adeccfe961c98915edebe0726a7e40e4a9a84e9117429a12fcb51f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acidification</topic><topic>Acids - chemistry</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Biochemistry</topic><topic>Bioremediation</topic><topic>Biotechnology</topic><topic>Carbohydrates - analysis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Denaturing Gradient Gel Electrophoresis</topic><topic>Eubacterium</topic><topic>Fatty Acids, Volatile - analysis</topic><topic>Fermentation</topic><topic>Food</topic><topic>Food waste</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>Lactobacillus</topic><topic>Lipids - analysis</topic><topic>Methane</topic><topic>Methane - metabolism</topic><topic>Microorganisms</topic><topic>Models, Theoretical</topic><topic>Organic acids</topic><topic>Proteins - analysis</topic><topic>Recycling</topic><topic>Retention</topic><topic>Retention time</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Suspended solids</topic><topic>Temperature</topic><topic>Time Factors</topic><topic>Variance analysis</topic><topic>Waste Water</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Gyuseong</creatorcontrib><creatorcontrib>Shin, Seung Gu</creatorcontrib><creatorcontrib>Lee, Joonyeob</creatorcontrib><creatorcontrib>Lee, Changsoo</creatorcontrib><creatorcontrib>Jo, Minho</creatorcontrib><creatorcontrib>Hwang, Seokhwan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied biochemistry and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Gyuseong</au><au>Shin, Seung Gu</au><au>Lee, Joonyeob</au><au>Lee, Changsoo</au><au>Jo, Minho</au><au>Hwang, Seokhwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesophilic Acidogenesis of Food Waste-Recycling Wastewater: Effects of Hydraulic Retention Time, pH, and Temperature</atitle><jtitle>Applied biochemistry and biotechnology</jtitle><stitle>Appl Biochem Biotechnol</stitle><addtitle>Appl Biochem Biotechnol</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>180</volume><issue>5</issue><spage>980</spage><epage>999</epage><pages>980-999</pages><issn>0273-2289</issn><eissn>1559-0291</eissn><abstract>The effects of hydraulic retention time (HRT), pH, and operating temperature (
T
OP
) on the degradation of food waste-recycling wastewater (FRW) were investigated in laboratory-scale hydrolysis/acidogenesis reactors. Response surface analysis was used to approximate the production of volatile organic acids and degradation of volatile suspended solids (VSS), carbohydrate, protein, and lipid with regard to the independent variables (1 ≤ HRT ≤ 3 days, 4 ≤ pH ≤ 6, 25 ≤
T
OP
≤ 45 °C). Partial cubic models adequately approximated the corresponding response surfaces at
α
< 5 %. The physiological conditions for maximum acidification (0.4 g TVFA + EtOH/g VS
added
) and the maximal degradation of VSS (47.5 %), carbohydrate (92.0 %), protein (17.7 %), and lipid (73.7 %) were different. Analysis of variance suggested that pH had a great effect on the responses in most cases, while
T
OP
and HRT, and their interaction, were significant in some cases. Denaturing gradient gel electrophoresis analysis revealed that
Sporanaerobacter acetigenes
,
Lactobacillus
sp., and
Eubacterium pyruvivorans
-like microorganisms might be main contributors to the hydrolysis and acidogenesis of FRW. Biochemical methane potential test confirmed higher methane yield (538.2 mL CH
4
/g VS
added
) from an acidogenic effluent than from raw FRW.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27272604</pmid><doi>10.1007/s12010-016-2147-z</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-2289 |
ispartof | Applied biochemistry and biotechnology, 2016-11, Vol.180 (5), p.980-999 |
issn | 0273-2289 1559-0291 |
language | eng |
recordid | cdi_proquest_miscellaneous_1846411983 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Acidification Acids - chemistry Bacteria Bacteria - genetics Bacteria - metabolism Biochemistry Bioremediation Biotechnology Carbohydrates - analysis Chemistry Chemistry and Materials Science Denaturing Gradient Gel Electrophoresis Eubacterium Fatty Acids, Volatile - analysis Fermentation Food Food waste Hydrogen-Ion Concentration Hydrolysis Lactobacillus Lipids - analysis Methane Methane - metabolism Microorganisms Models, Theoretical Organic acids Proteins - analysis Recycling Retention Retention time RNA, Ribosomal, 16S - genetics Suspended solids Temperature Time Factors Variance analysis Waste Water Water treatment |
title | Mesophilic Acidogenesis of Food Waste-Recycling Wastewater: Effects of Hydraulic Retention Time, pH, and Temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesophilic%20Acidogenesis%20of%20Food%20Waste-Recycling%20Wastewater:%20Effects%20of%20Hydraulic%20Retention%20Time,%20pH,%20and%20Temperature&rft.jtitle=Applied%20biochemistry%20and%20biotechnology&rft.au=Han,%20Gyuseong&rft.date=2016-11-01&rft.volume=180&rft.issue=5&rft.spage=980&rft.epage=999&rft.pages=980-999&rft.issn=0273-2289&rft.eissn=1559-0291&rft_id=info:doi/10.1007/s12010-016-2147-z&rft_dat=%3Cproquest_cross%3E4238416341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835918401&rft_id=info:pmid/27272604&rfr_iscdi=true |