Prediction of cervical lymph node metastasis in patients with papillary thyroid cancer using combined conventional ultrasound, strain elastography, and acoustic radiation force impulse (ARFI) elastography

Objectives To investigate the value of combined conventional ultrasound (US), strain elastography (SE) and acoustic radiation force impulse (ARFI) elastography for prediction of cervical lymph node metastasis (CLNM) in papillary thyroid cancer (PTC). Methods A consecutive series of 203 patients with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European radiology 2016-08, Vol.26 (8), p.2611-2622
Hauptverfasser: Xu, Jun-Mei, Xu, Xiao-Hong, Xu, Hui-Xiong, Zhang, Yi-Feng, Guo, Le-Hang, Liu, Lin-Na, Liu, Chang, Bo, Xiao-Wan, Qu, Shen, Xing, Mingzhao, Li, Xiao-Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2622
container_issue 8
container_start_page 2611
container_title European radiology
container_volume 26
creator Xu, Jun-Mei
Xu, Xiao-Hong
Xu, Hui-Xiong
Zhang, Yi-Feng
Guo, Le-Hang
Liu, Lin-Na
Liu, Chang
Bo, Xiao-Wan
Qu, Shen
Xing, Mingzhao
Li, Xiao-Long
description Objectives To investigate the value of combined conventional ultrasound (US), strain elastography (SE) and acoustic radiation force impulse (ARFI) elastography for prediction of cervical lymph node metastasis (CLNM) in papillary thyroid cancer (PTC). Methods A consecutive series of 203 patients with 222 PTCs were preoperatively evaluated by US, SE, and ARFI including virtual touch tissue imaging (VTI) and virtual touch tissue quantification (VTQ). A multivariate analysis was performed to predict CLNM by 22 independent variables. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance. Results Multivariate analysis demonstrated that VTI area ratio (VAR) > 1 was the best predictor for CLNM, followed by abnormal cervical lymph node (ACLN), capsule contact, microcalcification, capsule involvement, and multiple nodules (all P   1. As combination of US characteristics with and without VAR, the Az, sensitivity, and specificity were 0.803 and 0.556, 83.0 % and 100.0 %, and 77.6 % and 11.2 %, respectively ( P  
doi_str_mv 10.1007/s00330-015-4088-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1846411860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1801426246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-90be998249eab2f7245564e66cf28ad7e5e909013b120bb98f0b7444b01710113</originalsourceid><addsrcrecordid>eNqNUtGK1TAQLaK46-oH-CIBX1bY6iRN2-RxWVxdWFBEn0uaTu_N0iY1SVfuP_pRzt27igqCEEgmc86ZYeYUxXMOrzlA-yYBVBWUwOtSglKleFAcc1mJkoOSD4tj0JUqW63lUfEkpRsA0Fy2j4sj0dQNtLw-Lr5_jDg4m13wLIzMYrx11kxs2s3LlvkwIJsxm0THJeY8W0x26HNi31zeUrS4aTJxx_J2F4MbmDWeRNianN8wG-beeaTf4G-JRVVIe51yNCmsfjhjiZ6kihOVCJtolu3ujBk_MGPDmrKzLJrBmbv-xhAtMjcv65SQnZ5_urx69QfzafFoNJR7dn-fFF8u336-eF9ef3h3dXF-XVoJdS419Ki1ElKj6cXYClnXjcSmsaNQZmixRg0aeNVzAX2v1Qh9K6XsgbccOK9OitOD7hLD1xVT7maXLNIgPFLXHVeykZyrBv4DClyKRsiGoC__gt6ENdLA7lC0aSXUXpAfUDaGlCKO3RLdTBvoOHR7V3QHV3Tkim7vik4Q58W98trPOPxi_LQBAcQBkCjlNxh_K_1P1R_RVcXF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800338280</pqid></control><display><type>article</type><title>Prediction of cervical lymph node metastasis in patients with papillary thyroid cancer using combined conventional ultrasound, strain elastography, and acoustic radiation force impulse (ARFI) elastography</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Xu, Jun-Mei ; Xu, Xiao-Hong ; Xu, Hui-Xiong ; Zhang, Yi-Feng ; Guo, Le-Hang ; Liu, Lin-Na ; Liu, Chang ; Bo, Xiao-Wan ; Qu, Shen ; Xing, Mingzhao ; Li, Xiao-Long</creator><creatorcontrib>Xu, Jun-Mei ; Xu, Xiao-Hong ; Xu, Hui-Xiong ; Zhang, Yi-Feng ; Guo, Le-Hang ; Liu, Lin-Na ; Liu, Chang ; Bo, Xiao-Wan ; Qu, Shen ; Xing, Mingzhao ; Li, Xiao-Long</creatorcontrib><description>Objectives To investigate the value of combined conventional ultrasound (US), strain elastography (SE) and acoustic radiation force impulse (ARFI) elastography for prediction of cervical lymph node metastasis (CLNM) in papillary thyroid cancer (PTC). Methods A consecutive series of 203 patients with 222 PTCs were preoperatively evaluated by US, SE, and ARFI including virtual touch tissue imaging (VTI) and virtual touch tissue quantification (VTQ). A multivariate analysis was performed to predict CLNM by 22 independent variables. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance. Results Multivariate analysis demonstrated that VTI area ratio (VAR) &gt; 1 was the best predictor for CLNM, followed by abnormal cervical lymph node (ACLN), capsule contact, microcalcification, capsule involvement, and multiple nodules (all P  &lt; 0.05). ROC analyses of these characteristics showed the areas under the curve (Az), sensitivity, and specificity were 0.600–0.630, 47.7 %–93.2 %, and 26.9 %–78.4 % for US, respectively; and they were 0.784, 83.0 %, and 73.9 %, respectively, for VAR &gt; 1. As combination of US characteristics with and without VAR, the Az, sensitivity, and specificity were 0.803 and 0.556, 83.0 % and 100.0 %, and 77.6 % and 11.2 %, respectively ( P  &lt; 0.001). Conclusions ARFI elastography shows superior performance over conventional US, particularly when combined with US, in predicting CLNM in PTC patients. Key Points • Conventional ultrasound is useful in predicting cervical lymph node metastasis preoperatively. • Virtual touch tissue imaging area ratio is the strongest predicting factor. • Predictive performance is markedly improved by combining ultrasound characteristics with VAR. • Acoustic radiation force impulse elastography may be a promising complementary tool.</description><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-015-4088-2</identifier><identifier>PMID: 26560715</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustics ; Adolescent ; Adult ; Aged ; Calcinosis - diagnostic imaging ; Calcinosis - pathology ; Carcinoma - diagnostic imaging ; Carcinoma - pathology ; Carcinoma, Papillary ; Diagnostic Radiology ; Elasticity Imaging Techniques - methods ; Endocrinology ; Female ; Head and Neck ; Hospitals ; Humans ; Imaging ; Internal Medicine ; Interventional Radiology ; Lymph Nodes - diagnostic imaging ; Lymph Nodes - pathology ; Lymphatic Metastasis ; Lymphatic system ; Male ; Medical prognosis ; Medicine ; Medicine &amp; Public Health ; Metabolism ; Metastasis ; Middle Aged ; Multivariate Analysis ; Neck ; Neoplasms, Multiple Primary - diagnostic imaging ; Neoplasms, Multiple Primary - pathology ; Neuroradiology ; Radiation ; Radiology ; Reproducibility of Results ; ROC Curve ; Thyroid cancer ; Thyroid Cancer, Papillary ; Thyroid Neoplasms - diagnostic imaging ; Thyroid Neoplasms - pathology ; Thyroid Nodule - diagnostic imaging ; Thyroid Nodule - pathology ; Thyroidectomy ; Ultrasonic imaging ; Ultrasonography ; Ultrasound ; Young Adult</subject><ispartof>European radiology, 2016-08, Vol.26 (8), p.2611-2622</ispartof><rights>European Society of Radiology 2015</rights><rights>European Society of Radiology 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-90be998249eab2f7245564e66cf28ad7e5e909013b120bb98f0b7444b01710113</citedby><cites>FETCH-LOGICAL-c405t-90be998249eab2f7245564e66cf28ad7e5e909013b120bb98f0b7444b01710113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00330-015-4088-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00330-015-4088-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26560715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jun-Mei</creatorcontrib><creatorcontrib>Xu, Xiao-Hong</creatorcontrib><creatorcontrib>Xu, Hui-Xiong</creatorcontrib><creatorcontrib>Zhang, Yi-Feng</creatorcontrib><creatorcontrib>Guo, Le-Hang</creatorcontrib><creatorcontrib>Liu, Lin-Na</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Bo, Xiao-Wan</creatorcontrib><creatorcontrib>Qu, Shen</creatorcontrib><creatorcontrib>Xing, Mingzhao</creatorcontrib><creatorcontrib>Li, Xiao-Long</creatorcontrib><title>Prediction of cervical lymph node metastasis in patients with papillary thyroid cancer using combined conventional ultrasound, strain elastography, and acoustic radiation force impulse (ARFI) elastography</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><addtitle>Eur Radiol</addtitle><description>Objectives To investigate the value of combined conventional ultrasound (US), strain elastography (SE) and acoustic radiation force impulse (ARFI) elastography for prediction of cervical lymph node metastasis (CLNM) in papillary thyroid cancer (PTC). Methods A consecutive series of 203 patients with 222 PTCs were preoperatively evaluated by US, SE, and ARFI including virtual touch tissue imaging (VTI) and virtual touch tissue quantification (VTQ). A multivariate analysis was performed to predict CLNM by 22 independent variables. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance. Results Multivariate analysis demonstrated that VTI area ratio (VAR) &gt; 1 was the best predictor for CLNM, followed by abnormal cervical lymph node (ACLN), capsule contact, microcalcification, capsule involvement, and multiple nodules (all P  &lt; 0.05). ROC analyses of these characteristics showed the areas under the curve (Az), sensitivity, and specificity were 0.600–0.630, 47.7 %–93.2 %, and 26.9 %–78.4 % for US, respectively; and they were 0.784, 83.0 %, and 73.9 %, respectively, for VAR &gt; 1. As combination of US characteristics with and without VAR, the Az, sensitivity, and specificity were 0.803 and 0.556, 83.0 % and 100.0 %, and 77.6 % and 11.2 %, respectively ( P  &lt; 0.001). Conclusions ARFI elastography shows superior performance over conventional US, particularly when combined with US, in predicting CLNM in PTC patients. Key Points • Conventional ultrasound is useful in predicting cervical lymph node metastasis preoperatively. • Virtual touch tissue imaging area ratio is the strongest predicting factor. • Predictive performance is markedly improved by combining ultrasound characteristics with VAR. • Acoustic radiation force impulse elastography may be a promising complementary tool.</description><subject>Acoustics</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Calcinosis - diagnostic imaging</subject><subject>Calcinosis - pathology</subject><subject>Carcinoma - diagnostic imaging</subject><subject>Carcinoma - pathology</subject><subject>Carcinoma, Papillary</subject><subject>Diagnostic Radiology</subject><subject>Elasticity Imaging Techniques - methods</subject><subject>Endocrinology</subject><subject>Female</subject><subject>Head and Neck</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Imaging</subject><subject>Internal Medicine</subject><subject>Interventional Radiology</subject><subject>Lymph Nodes - diagnostic imaging</subject><subject>Lymph Nodes - pathology</subject><subject>Lymphatic Metastasis</subject><subject>Lymphatic system</subject><subject>Male</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolism</subject><subject>Metastasis</subject><subject>Middle Aged</subject><subject>Multivariate Analysis</subject><subject>Neck</subject><subject>Neoplasms, Multiple Primary - diagnostic imaging</subject><subject>Neoplasms, Multiple Primary - pathology</subject><subject>Neuroradiology</subject><subject>Radiation</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>ROC Curve</subject><subject>Thyroid cancer</subject><subject>Thyroid Cancer, Papillary</subject><subject>Thyroid Neoplasms - diagnostic imaging</subject><subject>Thyroid Neoplasms - pathology</subject><subject>Thyroid Nodule - diagnostic imaging</subject><subject>Thyroid Nodule - pathology</subject><subject>Thyroidectomy</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography</subject><subject>Ultrasound</subject><subject>Young Adult</subject><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNUtGK1TAQLaK46-oH-CIBX1bY6iRN2-RxWVxdWFBEn0uaTu_N0iY1SVfuP_pRzt27igqCEEgmc86ZYeYUxXMOrzlA-yYBVBWUwOtSglKleFAcc1mJkoOSD4tj0JUqW63lUfEkpRsA0Fy2j4sj0dQNtLw-Lr5_jDg4m13wLIzMYrx11kxs2s3LlvkwIJsxm0THJeY8W0x26HNi31zeUrS4aTJxx_J2F4MbmDWeRNianN8wG-beeaTf4G-JRVVIe51yNCmsfjhjiZ6kihOVCJtolu3ujBk_MGPDmrKzLJrBmbv-xhAtMjcv65SQnZ5_urx69QfzafFoNJR7dn-fFF8u336-eF9ef3h3dXF-XVoJdS419Ki1ElKj6cXYClnXjcSmsaNQZmixRg0aeNVzAX2v1Qh9K6XsgbccOK9OitOD7hLD1xVT7maXLNIgPFLXHVeykZyrBv4DClyKRsiGoC__gt6ENdLA7lC0aSXUXpAfUDaGlCKO3RLdTBvoOHR7V3QHV3Tkim7vik4Q58W98trPOPxi_LQBAcQBkCjlNxh_K_1P1R_RVcXF</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Xu, Jun-Mei</creator><creator>Xu, Xiao-Hong</creator><creator>Xu, Hui-Xiong</creator><creator>Zhang, Yi-Feng</creator><creator>Guo, Le-Hang</creator><creator>Liu, Lin-Na</creator><creator>Liu, Chang</creator><creator>Bo, Xiao-Wan</creator><creator>Qu, Shen</creator><creator>Xing, Mingzhao</creator><creator>Li, Xiao-Long</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20160801</creationdate><title>Prediction of cervical lymph node metastasis in patients with papillary thyroid cancer using combined conventional ultrasound, strain elastography, and acoustic radiation force impulse (ARFI) elastography</title><author>Xu, Jun-Mei ; Xu, Xiao-Hong ; Xu, Hui-Xiong ; Zhang, Yi-Feng ; Guo, Le-Hang ; Liu, Lin-Na ; Liu, Chang ; Bo, Xiao-Wan ; Qu, Shen ; Xing, Mingzhao ; Li, Xiao-Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-90be998249eab2f7245564e66cf28ad7e5e909013b120bb98f0b7444b01710113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acoustics</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Calcinosis - diagnostic imaging</topic><topic>Calcinosis - pathology</topic><topic>Carcinoma - diagnostic imaging</topic><topic>Carcinoma - pathology</topic><topic>Carcinoma, Papillary</topic><topic>Diagnostic Radiology</topic><topic>Elasticity Imaging Techniques - methods</topic><topic>Endocrinology</topic><topic>Female</topic><topic>Head and Neck</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Imaging</topic><topic>Internal Medicine</topic><topic>Interventional Radiology</topic><topic>Lymph Nodes - diagnostic imaging</topic><topic>Lymph Nodes - pathology</topic><topic>Lymphatic Metastasis</topic><topic>Lymphatic system</topic><topic>Male</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolism</topic><topic>Metastasis</topic><topic>Middle Aged</topic><topic>Multivariate Analysis</topic><topic>Neck</topic><topic>Neoplasms, Multiple Primary - diagnostic imaging</topic><topic>Neoplasms, Multiple Primary - pathology</topic><topic>Neuroradiology</topic><topic>Radiation</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>ROC Curve</topic><topic>Thyroid cancer</topic><topic>Thyroid Cancer, Papillary</topic><topic>Thyroid Neoplasms - diagnostic imaging</topic><topic>Thyroid Neoplasms - pathology</topic><topic>Thyroid Nodule - diagnostic imaging</topic><topic>Thyroid Nodule - pathology</topic><topic>Thyroidectomy</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography</topic><topic>Ultrasound</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jun-Mei</creatorcontrib><creatorcontrib>Xu, Xiao-Hong</creatorcontrib><creatorcontrib>Xu, Hui-Xiong</creatorcontrib><creatorcontrib>Zhang, Yi-Feng</creatorcontrib><creatorcontrib>Guo, Le-Hang</creatorcontrib><creatorcontrib>Liu, Lin-Na</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Bo, Xiao-Wan</creatorcontrib><creatorcontrib>Qu, Shen</creatorcontrib><creatorcontrib>Xing, Mingzhao</creatorcontrib><creatorcontrib>Li, Xiao-Long</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jun-Mei</au><au>Xu, Xiao-Hong</au><au>Xu, Hui-Xiong</au><au>Zhang, Yi-Feng</au><au>Guo, Le-Hang</au><au>Liu, Lin-Na</au><au>Liu, Chang</au><au>Bo, Xiao-Wan</au><au>Qu, Shen</au><au>Xing, Mingzhao</au><au>Li, Xiao-Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of cervical lymph node metastasis in patients with papillary thyroid cancer using combined conventional ultrasound, strain elastography, and acoustic radiation force impulse (ARFI) elastography</atitle><jtitle>European radiology</jtitle><stitle>Eur Radiol</stitle><addtitle>Eur Radiol</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>26</volume><issue>8</issue><spage>2611</spage><epage>2622</epage><pages>2611-2622</pages><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>Objectives To investigate the value of combined conventional ultrasound (US), strain elastography (SE) and acoustic radiation force impulse (ARFI) elastography for prediction of cervical lymph node metastasis (CLNM) in papillary thyroid cancer (PTC). Methods A consecutive series of 203 patients with 222 PTCs were preoperatively evaluated by US, SE, and ARFI including virtual touch tissue imaging (VTI) and virtual touch tissue quantification (VTQ). A multivariate analysis was performed to predict CLNM by 22 independent variables. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance. Results Multivariate analysis demonstrated that VTI area ratio (VAR) &gt; 1 was the best predictor for CLNM, followed by abnormal cervical lymph node (ACLN), capsule contact, microcalcification, capsule involvement, and multiple nodules (all P  &lt; 0.05). ROC analyses of these characteristics showed the areas under the curve (Az), sensitivity, and specificity were 0.600–0.630, 47.7 %–93.2 %, and 26.9 %–78.4 % for US, respectively; and they were 0.784, 83.0 %, and 73.9 %, respectively, for VAR &gt; 1. As combination of US characteristics with and without VAR, the Az, sensitivity, and specificity were 0.803 and 0.556, 83.0 % and 100.0 %, and 77.6 % and 11.2 %, respectively ( P  &lt; 0.001). Conclusions ARFI elastography shows superior performance over conventional US, particularly when combined with US, in predicting CLNM in PTC patients. Key Points • Conventional ultrasound is useful in predicting cervical lymph node metastasis preoperatively. • Virtual touch tissue imaging area ratio is the strongest predicting factor. • Predictive performance is markedly improved by combining ultrasound characteristics with VAR. • Acoustic radiation force impulse elastography may be a promising complementary tool.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26560715</pmid><doi>10.1007/s00330-015-4088-2</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0938-7994
ispartof European radiology, 2016-08, Vol.26 (8), p.2611-2622
issn 0938-7994
1432-1084
language eng
recordid cdi_proquest_miscellaneous_1846411860
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Acoustics
Adolescent
Adult
Aged
Calcinosis - diagnostic imaging
Calcinosis - pathology
Carcinoma - diagnostic imaging
Carcinoma - pathology
Carcinoma, Papillary
Diagnostic Radiology
Elasticity Imaging Techniques - methods
Endocrinology
Female
Head and Neck
Hospitals
Humans
Imaging
Internal Medicine
Interventional Radiology
Lymph Nodes - diagnostic imaging
Lymph Nodes - pathology
Lymphatic Metastasis
Lymphatic system
Male
Medical prognosis
Medicine
Medicine & Public Health
Metabolism
Metastasis
Middle Aged
Multivariate Analysis
Neck
Neoplasms, Multiple Primary - diagnostic imaging
Neoplasms, Multiple Primary - pathology
Neuroradiology
Radiation
Radiology
Reproducibility of Results
ROC Curve
Thyroid cancer
Thyroid Cancer, Papillary
Thyroid Neoplasms - diagnostic imaging
Thyroid Neoplasms - pathology
Thyroid Nodule - diagnostic imaging
Thyroid Nodule - pathology
Thyroidectomy
Ultrasonic imaging
Ultrasonography
Ultrasound
Young Adult
title Prediction of cervical lymph node metastasis in patients with papillary thyroid cancer using combined conventional ultrasound, strain elastography, and acoustic radiation force impulse (ARFI) elastography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20cervical%20lymph%20node%20metastasis%20in%20patients%20with%20papillary%20thyroid%20cancer%20using%20combined%20conventional%20ultrasound,%20strain%20elastography,%20and%20acoustic%20radiation%20force%20impulse%20(ARFI)%20elastography&rft.jtitle=European%20radiology&rft.au=Xu,%20Jun-Mei&rft.date=2016-08-01&rft.volume=26&rft.issue=8&rft.spage=2611&rft.epage=2622&rft.pages=2611-2622&rft.issn=0938-7994&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-015-4088-2&rft_dat=%3Cproquest_cross%3E1801426246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800338280&rft_id=info:pmid/26560715&rfr_iscdi=true