Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM)
This research presents a Supervised Intelligent Committee Machine (SICM) model to assess groundwater vulnerability indices of an aquifer. SICM uses Artificial Neural Networks (ANN) to overarch three Artificial Intelligence (AI) models: Support Vector Machine (SVM), Neuro-Fuzzy (NF) and Gene Expressi...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2017-01, Vol.574, p.691-706 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 706 |
---|---|
container_issue | |
container_start_page | 691 |
container_title | The Science of the total environment |
container_volume | 574 |
creator | Nadiri, Ata Allah Gharekhani, Maryam Khatibi, Rahman Sadeghfam, Sina Moghaddam, Asghar Asghari |
description | This research presents a Supervised Intelligent Committee Machine (SICM) model to assess groundwater vulnerability indices of an aquifer. SICM uses Artificial Neural Networks (ANN) to overarch three Artificial Intelligence (AI) models: Support Vector Machine (SVM), Neuro-Fuzzy (NF) and Gene Expression Programming (GEP). Each model uses the DRASTIC index, the acronym of 7 geological, hydrological and hydrogeological parameters, which collectively represents intrinsic (or natural) vulnerability and gives a sense of contaminants, such as nitrate-N, penetrating aquifers from the surface. These models are trained to modify or condition their DRASTIC index values by measured nitrate-N concentration. The three AI-techniques often perform similarly but have differences as well and therefore SICM exploits the situation to improve the modeled values by producing a hybrid modeling results through selecting better performing SVM, NF and GEP components. The models of the study area at Ardabil aquifer show that the vulnerability indices by the DRASTIC framework produces sharp fronts but AI models smoothen the fronts and reflect a better correlation with observed nitrate values; SICM improves on the performances of three AI models and cope well with heterogeneity and uncertain parameters.
[Display omitted]
•Use DRASTIC model to assess groundwater vulnerability of Ardabil plain aquifer.•Improve DRASTIC vulnerability index by artificial intelligence (AI): SVM, NF, GEP.•Use Supervised Intelligent Committee Machine (SICM) to improve on AI-techniques.•Use nitrate-N data to condition vulnerability indices (CVI) by SICM, SVM, NF, GEP.•Produce CVI maps of the study area by each model and SICM performs consistently. |
doi_str_mv | 10.1016/j.scitotenv.2016.09.093 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1846408890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969716320125</els_id><sourcerecordid>1846408890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-bf236a6afd677b794b2013eaf8e89ce6e7bfdd211bda0b033e876fb13cdb01493</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhi0EoqHwF2CP5bDBXht_HKsISqRWHApnyx-z4GjXDrY3KP8eR2l7LdZIHlvPzNjvi9AHgtcEE_5pty4u1FQhHtZDu1hj1YK-QCsiheoJHvhLtMKYyV5xJS7Qm1J2uC0hyWt0MQjOmfjMV8jc5LRE_9dUyN1hmSJkY8MU6rEL0QcHpXOpJTWkCL6zx-5-2UM-hNJO21hhmsIviA66TZrnUCtAd2fc7xChu7rfbu4-vkWvRjMVePewX6KfX7_82Hzrb7_fbDfXt71jAtfejgPlhpvRcyGsUMy2f1EwowSpHHAQdvR-IMR6gy2mFKTgoyXUeYsJU_QSXZ377nP6s0Cpeg7FtfeZCGkpmkjGGZZS4f9AqcADZQNrqDijLqdSMox6n8Ns8lETrE9W6J1-skKfrNBYtaCt8v3DkMXO4J_qHrVvwPUZgKbKIUA-NTpJ6UMGV7VP4dkh_wBtY6Cq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837023424</pqid></control><display><type>article</type><title>Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM)</title><source>Elsevier ScienceDirect Journals</source><creator>Nadiri, Ata Allah ; Gharekhani, Maryam ; Khatibi, Rahman ; Sadeghfam, Sina ; Moghaddam, Asghar Asghari</creator><creatorcontrib>Nadiri, Ata Allah ; Gharekhani, Maryam ; Khatibi, Rahman ; Sadeghfam, Sina ; Moghaddam, Asghar Asghari</creatorcontrib><description>This research presents a Supervised Intelligent Committee Machine (SICM) model to assess groundwater vulnerability indices of an aquifer. SICM uses Artificial Neural Networks (ANN) to overarch three Artificial Intelligence (AI) models: Support Vector Machine (SVM), Neuro-Fuzzy (NF) and Gene Expression Programming (GEP). Each model uses the DRASTIC index, the acronym of 7 geological, hydrological and hydrogeological parameters, which collectively represents intrinsic (or natural) vulnerability and gives a sense of contaminants, such as nitrate-N, penetrating aquifers from the surface. These models are trained to modify or condition their DRASTIC index values by measured nitrate-N concentration. The three AI-techniques often perform similarly but have differences as well and therefore SICM exploits the situation to improve the modeled values by producing a hybrid modeling results through selecting better performing SVM, NF and GEP components. The models of the study area at Ardabil aquifer show that the vulnerability indices by the DRASTIC framework produces sharp fronts but AI models smoothen the fronts and reflect a better correlation with observed nitrate values; SICM improves on the performances of three AI models and cope well with heterogeneity and uncertain parameters.
[Display omitted]
•Use DRASTIC model to assess groundwater vulnerability of Ardabil plain aquifer.•Improve DRASTIC vulnerability index by artificial intelligence (AI): SVM, NF, GEP.•Use Supervised Intelligent Committee Machine (SICM) to improve on AI-techniques.•Use nitrate-N data to condition vulnerability indices (CVI) by SICM, SVM, NF, GEP.•Produce CVI maps of the study area by each model and SICM performs consistently.</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2016.09.093</identifier><identifier>PMID: 27664756</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Ardabil aquifer ; Artificial intelligence models ; Nitrate ; Supervised Intelligent Committee Machine ; Vulnerability index</subject><ispartof>The Science of the total environment, 2017-01, Vol.574, p.691-706</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-bf236a6afd677b794b2013eaf8e89ce6e7bfdd211bda0b033e876fb13cdb01493</citedby><cites>FETCH-LOGICAL-c470t-bf236a6afd677b794b2013eaf8e89ce6e7bfdd211bda0b033e876fb13cdb01493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0048969716320125$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27664756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nadiri, Ata Allah</creatorcontrib><creatorcontrib>Gharekhani, Maryam</creatorcontrib><creatorcontrib>Khatibi, Rahman</creatorcontrib><creatorcontrib>Sadeghfam, Sina</creatorcontrib><creatorcontrib>Moghaddam, Asghar Asghari</creatorcontrib><title>Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM)</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>This research presents a Supervised Intelligent Committee Machine (SICM) model to assess groundwater vulnerability indices of an aquifer. SICM uses Artificial Neural Networks (ANN) to overarch three Artificial Intelligence (AI) models: Support Vector Machine (SVM), Neuro-Fuzzy (NF) and Gene Expression Programming (GEP). Each model uses the DRASTIC index, the acronym of 7 geological, hydrological and hydrogeological parameters, which collectively represents intrinsic (or natural) vulnerability and gives a sense of contaminants, such as nitrate-N, penetrating aquifers from the surface. These models are trained to modify or condition their DRASTIC index values by measured nitrate-N concentration. The three AI-techniques often perform similarly but have differences as well and therefore SICM exploits the situation to improve the modeled values by producing a hybrid modeling results through selecting better performing SVM, NF and GEP components. The models of the study area at Ardabil aquifer show that the vulnerability indices by the DRASTIC framework produces sharp fronts but AI models smoothen the fronts and reflect a better correlation with observed nitrate values; SICM improves on the performances of three AI models and cope well with heterogeneity and uncertain parameters.
[Display omitted]
•Use DRASTIC model to assess groundwater vulnerability of Ardabil plain aquifer.•Improve DRASTIC vulnerability index by artificial intelligence (AI): SVM, NF, GEP.•Use Supervised Intelligent Committee Machine (SICM) to improve on AI-techniques.•Use nitrate-N data to condition vulnerability indices (CVI) by SICM, SVM, NF, GEP.•Produce CVI maps of the study area by each model and SICM performs consistently.</description><subject>Ardabil aquifer</subject><subject>Artificial intelligence models</subject><subject>Nitrate</subject><subject>Supervised Intelligent Committee Machine</subject><subject>Vulnerability index</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkU1vEzEQhi0EoqHwF2CP5bDBXht_HKsISqRWHApnyx-z4GjXDrY3KP8eR2l7LdZIHlvPzNjvi9AHgtcEE_5pty4u1FQhHtZDu1hj1YK-QCsiheoJHvhLtMKYyV5xJS7Qm1J2uC0hyWt0MQjOmfjMV8jc5LRE_9dUyN1hmSJkY8MU6rEL0QcHpXOpJTWkCL6zx-5-2UM-hNJO21hhmsIviA66TZrnUCtAd2fc7xChu7rfbu4-vkWvRjMVePewX6KfX7_82Hzrb7_fbDfXt71jAtfejgPlhpvRcyGsUMy2f1EwowSpHHAQdvR-IMR6gy2mFKTgoyXUeYsJU_QSXZ377nP6s0Cpeg7FtfeZCGkpmkjGGZZS4f9AqcADZQNrqDijLqdSMox6n8Ns8lETrE9W6J1-skKfrNBYtaCt8v3DkMXO4J_qHrVvwPUZgKbKIUA-NTpJ6UMGV7VP4dkh_wBtY6Cq</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Nadiri, Ata Allah</creator><creator>Gharekhani, Maryam</creator><creator>Khatibi, Rahman</creator><creator>Sadeghfam, Sina</creator><creator>Moghaddam, Asghar Asghari</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7ST</scope><scope>7TV</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20170101</creationdate><title>Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM)</title><author>Nadiri, Ata Allah ; Gharekhani, Maryam ; Khatibi, Rahman ; Sadeghfam, Sina ; Moghaddam, Asghar Asghari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-bf236a6afd677b794b2013eaf8e89ce6e7bfdd211bda0b033e876fb13cdb01493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Ardabil aquifer</topic><topic>Artificial intelligence models</topic><topic>Nitrate</topic><topic>Supervised Intelligent Committee Machine</topic><topic>Vulnerability index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadiri, Ata Allah</creatorcontrib><creatorcontrib>Gharekhani, Maryam</creatorcontrib><creatorcontrib>Khatibi, Rahman</creatorcontrib><creatorcontrib>Sadeghfam, Sina</creatorcontrib><creatorcontrib>Moghaddam, Asghar Asghari</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadiri, Ata Allah</au><au>Gharekhani, Maryam</au><au>Khatibi, Rahman</au><au>Sadeghfam, Sina</au><au>Moghaddam, Asghar Asghari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM)</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>574</volume><spage>691</spage><epage>706</epage><pages>691-706</pages><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>This research presents a Supervised Intelligent Committee Machine (SICM) model to assess groundwater vulnerability indices of an aquifer. SICM uses Artificial Neural Networks (ANN) to overarch three Artificial Intelligence (AI) models: Support Vector Machine (SVM), Neuro-Fuzzy (NF) and Gene Expression Programming (GEP). Each model uses the DRASTIC index, the acronym of 7 geological, hydrological and hydrogeological parameters, which collectively represents intrinsic (or natural) vulnerability and gives a sense of contaminants, such as nitrate-N, penetrating aquifers from the surface. These models are trained to modify or condition their DRASTIC index values by measured nitrate-N concentration. The three AI-techniques often perform similarly but have differences as well and therefore SICM exploits the situation to improve the modeled values by producing a hybrid modeling results through selecting better performing SVM, NF and GEP components. The models of the study area at Ardabil aquifer show that the vulnerability indices by the DRASTIC framework produces sharp fronts but AI models smoothen the fronts and reflect a better correlation with observed nitrate values; SICM improves on the performances of three AI models and cope well with heterogeneity and uncertain parameters.
[Display omitted]
•Use DRASTIC model to assess groundwater vulnerability of Ardabil plain aquifer.•Improve DRASTIC vulnerability index by artificial intelligence (AI): SVM, NF, GEP.•Use Supervised Intelligent Committee Machine (SICM) to improve on AI-techniques.•Use nitrate-N data to condition vulnerability indices (CVI) by SICM, SVM, NF, GEP.•Produce CVI maps of the study area by each model and SICM performs consistently.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27664756</pmid><doi>10.1016/j.scitotenv.2016.09.093</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0048-9697 |
ispartof | The Science of the total environment, 2017-01, Vol.574, p.691-706 |
issn | 0048-9697 1879-1026 |
language | eng |
recordid | cdi_proquest_miscellaneous_1846408890 |
source | Elsevier ScienceDirect Journals |
subjects | Ardabil aquifer Artificial intelligence models Nitrate Supervised Intelligent Committee Machine Vulnerability index |
title | Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Groundwater%20vulnerability%20indices%20conditioned%20by%20Supervised%20Intelligence%20Committee%20Machine%20(SICM)&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Nadiri,%20Ata%20Allah&rft.date=2017-01-01&rft.volume=574&rft.spage=691&rft.epage=706&rft.pages=691-706&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2016.09.093&rft_dat=%3Cproquest_cross%3E1846408890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837023424&rft_id=info:pmid/27664756&rft_els_id=S0048969716320125&rfr_iscdi=true |