Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM)

This research presents a Supervised Intelligent Committee Machine (SICM) model to assess groundwater vulnerability indices of an aquifer. SICM uses Artificial Neural Networks (ANN) to overarch three Artificial Intelligence (AI) models: Support Vector Machine (SVM), Neuro-Fuzzy (NF) and Gene Expressi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2017-01, Vol.574, p.691-706
Hauptverfasser: Nadiri, Ata Allah, Gharekhani, Maryam, Khatibi, Rahman, Sadeghfam, Sina, Moghaddam, Asghar Asghari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 706
container_issue
container_start_page 691
container_title The Science of the total environment
container_volume 574
creator Nadiri, Ata Allah
Gharekhani, Maryam
Khatibi, Rahman
Sadeghfam, Sina
Moghaddam, Asghar Asghari
description This research presents a Supervised Intelligent Committee Machine (SICM) model to assess groundwater vulnerability indices of an aquifer. SICM uses Artificial Neural Networks (ANN) to overarch three Artificial Intelligence (AI) models: Support Vector Machine (SVM), Neuro-Fuzzy (NF) and Gene Expression Programming (GEP). Each model uses the DRASTIC index, the acronym of 7 geological, hydrological and hydrogeological parameters, which collectively represents intrinsic (or natural) vulnerability and gives a sense of contaminants, such as nitrate-N, penetrating aquifers from the surface. These models are trained to modify or condition their DRASTIC index values by measured nitrate-N concentration. The three AI-techniques often perform similarly but have differences as well and therefore SICM exploits the situation to improve the modeled values by producing a hybrid modeling results through selecting better performing SVM, NF and GEP components. The models of the study area at Ardabil aquifer show that the vulnerability indices by the DRASTIC framework produces sharp fronts but AI models smoothen the fronts and reflect a better correlation with observed nitrate values; SICM improves on the performances of three AI models and cope well with heterogeneity and uncertain parameters. [Display omitted] •Use DRASTIC model to assess groundwater vulnerability of Ardabil plain aquifer.•Improve DRASTIC vulnerability index by artificial intelligence (AI): SVM, NF, GEP.•Use Supervised Intelligent Committee Machine (SICM) to improve on AI-techniques.•Use nitrate-N data to condition vulnerability indices (CVI) by SICM, SVM, NF, GEP.•Produce CVI maps of the study area by each model and SICM performs consistently.
doi_str_mv 10.1016/j.scitotenv.2016.09.093
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1846408890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969716320125</els_id><sourcerecordid>1846408890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-bf236a6afd677b794b2013eaf8e89ce6e7bfdd211bda0b033e876fb13cdb01493</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhi0EoqHwF2CP5bDBXht_HKsISqRWHApnyx-z4GjXDrY3KP8eR2l7LdZIHlvPzNjvi9AHgtcEE_5pty4u1FQhHtZDu1hj1YK-QCsiheoJHvhLtMKYyV5xJS7Qm1J2uC0hyWt0MQjOmfjMV8jc5LRE_9dUyN1hmSJkY8MU6rEL0QcHpXOpJTWkCL6zx-5-2UM-hNJO21hhmsIviA66TZrnUCtAd2fc7xChu7rfbu4-vkWvRjMVePewX6KfX7_82Hzrb7_fbDfXt71jAtfejgPlhpvRcyGsUMy2f1EwowSpHHAQdvR-IMR6gy2mFKTgoyXUeYsJU_QSXZ377nP6s0Cpeg7FtfeZCGkpmkjGGZZS4f9AqcADZQNrqDijLqdSMox6n8Ns8lETrE9W6J1-skKfrNBYtaCt8v3DkMXO4J_qHrVvwPUZgKbKIUA-NTpJ6UMGV7VP4dkh_wBtY6Cq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837023424</pqid></control><display><type>article</type><title>Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM)</title><source>Elsevier ScienceDirect Journals</source><creator>Nadiri, Ata Allah ; Gharekhani, Maryam ; Khatibi, Rahman ; Sadeghfam, Sina ; Moghaddam, Asghar Asghari</creator><creatorcontrib>Nadiri, Ata Allah ; Gharekhani, Maryam ; Khatibi, Rahman ; Sadeghfam, Sina ; Moghaddam, Asghar Asghari</creatorcontrib><description>This research presents a Supervised Intelligent Committee Machine (SICM) model to assess groundwater vulnerability indices of an aquifer. SICM uses Artificial Neural Networks (ANN) to overarch three Artificial Intelligence (AI) models: Support Vector Machine (SVM), Neuro-Fuzzy (NF) and Gene Expression Programming (GEP). Each model uses the DRASTIC index, the acronym of 7 geological, hydrological and hydrogeological parameters, which collectively represents intrinsic (or natural) vulnerability and gives a sense of contaminants, such as nitrate-N, penetrating aquifers from the surface. These models are trained to modify or condition their DRASTIC index values by measured nitrate-N concentration. The three AI-techniques often perform similarly but have differences as well and therefore SICM exploits the situation to improve the modeled values by producing a hybrid modeling results through selecting better performing SVM, NF and GEP components. The models of the study area at Ardabil aquifer show that the vulnerability indices by the DRASTIC framework produces sharp fronts but AI models smoothen the fronts and reflect a better correlation with observed nitrate values; SICM improves on the performances of three AI models and cope well with heterogeneity and uncertain parameters. [Display omitted] •Use DRASTIC model to assess groundwater vulnerability of Ardabil plain aquifer.•Improve DRASTIC vulnerability index by artificial intelligence (AI): SVM, NF, GEP.•Use Supervised Intelligent Committee Machine (SICM) to improve on AI-techniques.•Use nitrate-N data to condition vulnerability indices (CVI) by SICM, SVM, NF, GEP.•Produce CVI maps of the study area by each model and SICM performs consistently.</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2016.09.093</identifier><identifier>PMID: 27664756</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Ardabil aquifer ; Artificial intelligence models ; Nitrate ; Supervised Intelligent Committee Machine ; Vulnerability index</subject><ispartof>The Science of the total environment, 2017-01, Vol.574, p.691-706</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-bf236a6afd677b794b2013eaf8e89ce6e7bfdd211bda0b033e876fb13cdb01493</citedby><cites>FETCH-LOGICAL-c470t-bf236a6afd677b794b2013eaf8e89ce6e7bfdd211bda0b033e876fb13cdb01493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0048969716320125$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27664756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nadiri, Ata Allah</creatorcontrib><creatorcontrib>Gharekhani, Maryam</creatorcontrib><creatorcontrib>Khatibi, Rahman</creatorcontrib><creatorcontrib>Sadeghfam, Sina</creatorcontrib><creatorcontrib>Moghaddam, Asghar Asghari</creatorcontrib><title>Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM)</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>This research presents a Supervised Intelligent Committee Machine (SICM) model to assess groundwater vulnerability indices of an aquifer. SICM uses Artificial Neural Networks (ANN) to overarch three Artificial Intelligence (AI) models: Support Vector Machine (SVM), Neuro-Fuzzy (NF) and Gene Expression Programming (GEP). Each model uses the DRASTIC index, the acronym of 7 geological, hydrological and hydrogeological parameters, which collectively represents intrinsic (or natural) vulnerability and gives a sense of contaminants, such as nitrate-N, penetrating aquifers from the surface. These models are trained to modify or condition their DRASTIC index values by measured nitrate-N concentration. The three AI-techniques often perform similarly but have differences as well and therefore SICM exploits the situation to improve the modeled values by producing a hybrid modeling results through selecting better performing SVM, NF and GEP components. The models of the study area at Ardabil aquifer show that the vulnerability indices by the DRASTIC framework produces sharp fronts but AI models smoothen the fronts and reflect a better correlation with observed nitrate values; SICM improves on the performances of three AI models and cope well with heterogeneity and uncertain parameters. [Display omitted] •Use DRASTIC model to assess groundwater vulnerability of Ardabil plain aquifer.•Improve DRASTIC vulnerability index by artificial intelligence (AI): SVM, NF, GEP.•Use Supervised Intelligent Committee Machine (SICM) to improve on AI-techniques.•Use nitrate-N data to condition vulnerability indices (CVI) by SICM, SVM, NF, GEP.•Produce CVI maps of the study area by each model and SICM performs consistently.</description><subject>Ardabil aquifer</subject><subject>Artificial intelligence models</subject><subject>Nitrate</subject><subject>Supervised Intelligent Committee Machine</subject><subject>Vulnerability index</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkU1vEzEQhi0EoqHwF2CP5bDBXht_HKsISqRWHApnyx-z4GjXDrY3KP8eR2l7LdZIHlvPzNjvi9AHgtcEE_5pty4u1FQhHtZDu1hj1YK-QCsiheoJHvhLtMKYyV5xJS7Qm1J2uC0hyWt0MQjOmfjMV8jc5LRE_9dUyN1hmSJkY8MU6rEL0QcHpXOpJTWkCL6zx-5-2UM-hNJO21hhmsIviA66TZrnUCtAd2fc7xChu7rfbu4-vkWvRjMVePewX6KfX7_82Hzrb7_fbDfXt71jAtfejgPlhpvRcyGsUMy2f1EwowSpHHAQdvR-IMR6gy2mFKTgoyXUeYsJU_QSXZ377nP6s0Cpeg7FtfeZCGkpmkjGGZZS4f9AqcADZQNrqDijLqdSMox6n8Ns8lETrE9W6J1-skKfrNBYtaCt8v3DkMXO4J_qHrVvwPUZgKbKIUA-NTpJ6UMGV7VP4dkh_wBtY6Cq</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Nadiri, Ata Allah</creator><creator>Gharekhani, Maryam</creator><creator>Khatibi, Rahman</creator><creator>Sadeghfam, Sina</creator><creator>Moghaddam, Asghar Asghari</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7ST</scope><scope>7TV</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20170101</creationdate><title>Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM)</title><author>Nadiri, Ata Allah ; Gharekhani, Maryam ; Khatibi, Rahman ; Sadeghfam, Sina ; Moghaddam, Asghar Asghari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-bf236a6afd677b794b2013eaf8e89ce6e7bfdd211bda0b033e876fb13cdb01493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Ardabil aquifer</topic><topic>Artificial intelligence models</topic><topic>Nitrate</topic><topic>Supervised Intelligent Committee Machine</topic><topic>Vulnerability index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadiri, Ata Allah</creatorcontrib><creatorcontrib>Gharekhani, Maryam</creatorcontrib><creatorcontrib>Khatibi, Rahman</creatorcontrib><creatorcontrib>Sadeghfam, Sina</creatorcontrib><creatorcontrib>Moghaddam, Asghar Asghari</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadiri, Ata Allah</au><au>Gharekhani, Maryam</au><au>Khatibi, Rahman</au><au>Sadeghfam, Sina</au><au>Moghaddam, Asghar Asghari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM)</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>574</volume><spage>691</spage><epage>706</epage><pages>691-706</pages><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>This research presents a Supervised Intelligent Committee Machine (SICM) model to assess groundwater vulnerability indices of an aquifer. SICM uses Artificial Neural Networks (ANN) to overarch three Artificial Intelligence (AI) models: Support Vector Machine (SVM), Neuro-Fuzzy (NF) and Gene Expression Programming (GEP). Each model uses the DRASTIC index, the acronym of 7 geological, hydrological and hydrogeological parameters, which collectively represents intrinsic (or natural) vulnerability and gives a sense of contaminants, such as nitrate-N, penetrating aquifers from the surface. These models are trained to modify or condition their DRASTIC index values by measured nitrate-N concentration. The three AI-techniques often perform similarly but have differences as well and therefore SICM exploits the situation to improve the modeled values by producing a hybrid modeling results through selecting better performing SVM, NF and GEP components. The models of the study area at Ardabil aquifer show that the vulnerability indices by the DRASTIC framework produces sharp fronts but AI models smoothen the fronts and reflect a better correlation with observed nitrate values; SICM improves on the performances of three AI models and cope well with heterogeneity and uncertain parameters. [Display omitted] •Use DRASTIC model to assess groundwater vulnerability of Ardabil plain aquifer.•Improve DRASTIC vulnerability index by artificial intelligence (AI): SVM, NF, GEP.•Use Supervised Intelligent Committee Machine (SICM) to improve on AI-techniques.•Use nitrate-N data to condition vulnerability indices (CVI) by SICM, SVM, NF, GEP.•Produce CVI maps of the study area by each model and SICM performs consistently.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27664756</pmid><doi>10.1016/j.scitotenv.2016.09.093</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0048-9697
ispartof The Science of the total environment, 2017-01, Vol.574, p.691-706
issn 0048-9697
1879-1026
language eng
recordid cdi_proquest_miscellaneous_1846408890
source Elsevier ScienceDirect Journals
subjects Ardabil aquifer
Artificial intelligence models
Nitrate
Supervised Intelligent Committee Machine
Vulnerability index
title Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Groundwater%20vulnerability%20indices%20conditioned%20by%20Supervised%20Intelligence%20Committee%20Machine%20(SICM)&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Nadiri,%20Ata%20Allah&rft.date=2017-01-01&rft.volume=574&rft.spage=691&rft.epage=706&rft.pages=691-706&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2016.09.093&rft_dat=%3Cproquest_cross%3E1846408890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837023424&rft_id=info:pmid/27664756&rft_els_id=S0048969716320125&rfr_iscdi=true