Spatial memory training induces morphological changes detected by manganese-enhanced MRI in the hippocampal CA3 mossy fiber terminal zone

Hippocampal mossy fibers (MFs) can show plasticity of their axon terminal arbor consequent to learning a spatial memory task. Such plasticity is seen as translaminar sprouting from the stratum lucidum (SL) of CA3 into the stratum pyramidale (SP) and the stratum oriens (SO). However, the functional r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2016-03, Vol.128, p.227-237
Hauptverfasser: Zhang, Binbin, Chuang, Kai-Hsiang, Tjio, Ci'en, Chen, Way Cherng, Sheu, Fwu-Shan, Routtenberg, Aryeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue
container_start_page 227
container_title NeuroImage (Orlando, Fla.)
container_volume 128
creator Zhang, Binbin
Chuang, Kai-Hsiang
Tjio, Ci'en
Chen, Way Cherng
Sheu, Fwu-Shan
Routtenberg, Aryeh
description Hippocampal mossy fibers (MFs) can show plasticity of their axon terminal arbor consequent to learning a spatial memory task. Such plasticity is seen as translaminar sprouting from the stratum lucidum (SL) of CA3 into the stratum pyramidale (SP) and the stratum oriens (SO). However, the functional role of this presynaptic remodeling is still obscure. In vivo imaging that allows longitudinal observation of such remodeling could provide a deeper understanding of this presynaptic growth phenomenon as it occurs over time. Here we used manganese-enhanced magnetic resonance imaging (MEMRI), which shows a high-contrast area that co-localizes with the MFs. This technique was applied in the detection of learning-induced MF plasticity in two strains of rats. Quantitative analysis of a series of sections in the rostral dorsal hippocampus showed increases in the CA3a′ area in MEMRI of trained Wistar rats consistent with the increased SO+SP area seen in the Timm's staining. MF plasticity was not seen in the trained Lister-Hooded rats in either MEMRI or in Timm's staining. This indicates the potential of MEMRI for revealing neuro-architectures and plasticity of the hippocampal MF system in vivo in longitudinal studies. •Translaminar sprouting of hippocampal mossy fiber after learning observed in Wistar but not LH rat.•Consistent change of CA3a area detected by MEMRI compared to swim control.•MEMRI enhancement correlated with Timm's staining of mossy fiber.•We demonstrated the potential of imaging plasticity in neuro-architectures.
doi_str_mv 10.1016/j.neuroimage.2015.07.084
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1846408573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811915007041</els_id><sourcerecordid>1846408573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-3e2d2c2a8f12b0300e2d963ae609d459987219ac669ce58f78de6f890e5576ff3</originalsourceid><addsrcrecordid>eNqFkcuO1DAQRSMEYoaBX0CW2LBJsJ34tRxaPEYahMRjbbmdSrdbiR3sBKn5A_6aanoAic2sbN86VeWqW1WE0YZRJl8dmghrTmFyO2g4ZaKhqqG6e1BdMmpEbYTiD0930daaMXNRPSnlQCk1rNOPqwsuuegYE5fVz8-zW4IbyQRTykeyZBdiiDsSYr96KATVeZ_GtAseKb93cYdqDwv4BXqyPZIJJRehQA0Rwx7VD59usABZ9kD2YZ6Td9OM2ZvrFuuVciRD2EImC-QpRAz8SBGeVo8GNxZ4dndeVV_fvvmyeV_ffnx3s7m-rX3XiqVugffcc6cHxre0pRTfRrYOJDV9J4zRijPjvJTGg9CD0j3IQRsKQig5DO1V9fJcd87p2wplsVMoHsYRZ0hrsUx3sqNaqPZ-VEkleaelQPTFf-ghrRln-01Jjv_iEil9pnzGNWQY7JzRxHy0jNqTs_Zg_zlrT85aqiw6i6nP7xqs2wn6v4l_rETg9RkAXN73ANkWH-BkR8jole1TuL_LLxgYusQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766299826</pqid></control><display><type>article</type><title>Spatial memory training induces morphological changes detected by manganese-enhanced MRI in the hippocampal CA3 mossy fiber terminal zone</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Zhang, Binbin ; Chuang, Kai-Hsiang ; Tjio, Ci'en ; Chen, Way Cherng ; Sheu, Fwu-Shan ; Routtenberg, Aryeh</creator><creatorcontrib>Zhang, Binbin ; Chuang, Kai-Hsiang ; Tjio, Ci'en ; Chen, Way Cherng ; Sheu, Fwu-Shan ; Routtenberg, Aryeh</creatorcontrib><description>Hippocampal mossy fibers (MFs) can show plasticity of their axon terminal arbor consequent to learning a spatial memory task. Such plasticity is seen as translaminar sprouting from the stratum lucidum (SL) of CA3 into the stratum pyramidale (SP) and the stratum oriens (SO). However, the functional role of this presynaptic remodeling is still obscure. In vivo imaging that allows longitudinal observation of such remodeling could provide a deeper understanding of this presynaptic growth phenomenon as it occurs over time. Here we used manganese-enhanced magnetic resonance imaging (MEMRI), which shows a high-contrast area that co-localizes with the MFs. This technique was applied in the detection of learning-induced MF plasticity in two strains of rats. Quantitative analysis of a series of sections in the rostral dorsal hippocampus showed increases in the CA3a′ area in MEMRI of trained Wistar rats consistent with the increased SO+SP area seen in the Timm's staining. MF plasticity was not seen in the trained Lister-Hooded rats in either MEMRI or in Timm's staining. This indicates the potential of MEMRI for revealing neuro-architectures and plasticity of the hippocampal MF system in vivo in longitudinal studies. •Translaminar sprouting of hippocampal mossy fiber after learning observed in Wistar but not LH rat.•Consistent change of CA3a area detected by MEMRI compared to swim control.•MEMRI enhancement correlated with Timm's staining of mossy fiber.•We demonstrated the potential of imaging plasticity in neuro-architectures.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2015.07.084</identifier><identifier>PMID: 26254115</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animal memory ; Animals ; Brain Mapping - methods ; CA3 Region, Hippocampal - cytology ; CA3 Region, Hippocampal - physiology ; Epilepsy ; Hippocampal mossy fibers ; Image Processing, Computer-Assisted ; Magnetic Resonance Imaging - methods ; Male ; Manganese ; Maze Learning - physiology ; Memory ; Mossy Fibers, Hippocampal - physiology ; Mossy Fibers, Hippocampal - ultrastructure ; MRI ; Neuronal Plasticity - physiology ; Presynaptic plasticity ; Rats ; Rats, Wistar ; Rodents ; Spatial learning ; Spatial Memory - physiology ; Studies ; Water maze</subject><ispartof>NeuroImage (Orlando, Fla.), 2016-03, Vol.128, p.227-237</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Mar 1, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-3e2d2c2a8f12b0300e2d963ae609d459987219ac669ce58f78de6f890e5576ff3</citedby><cites>FETCH-LOGICAL-c435t-3e2d2c2a8f12b0300e2d963ae609d459987219ac669ce58f78de6f890e5576ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1766299826?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72341</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26254115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Binbin</creatorcontrib><creatorcontrib>Chuang, Kai-Hsiang</creatorcontrib><creatorcontrib>Tjio, Ci'en</creatorcontrib><creatorcontrib>Chen, Way Cherng</creatorcontrib><creatorcontrib>Sheu, Fwu-Shan</creatorcontrib><creatorcontrib>Routtenberg, Aryeh</creatorcontrib><title>Spatial memory training induces morphological changes detected by manganese-enhanced MRI in the hippocampal CA3 mossy fiber terminal zone</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Hippocampal mossy fibers (MFs) can show plasticity of their axon terminal arbor consequent to learning a spatial memory task. Such plasticity is seen as translaminar sprouting from the stratum lucidum (SL) of CA3 into the stratum pyramidale (SP) and the stratum oriens (SO). However, the functional role of this presynaptic remodeling is still obscure. In vivo imaging that allows longitudinal observation of such remodeling could provide a deeper understanding of this presynaptic growth phenomenon as it occurs over time. Here we used manganese-enhanced magnetic resonance imaging (MEMRI), which shows a high-contrast area that co-localizes with the MFs. This technique was applied in the detection of learning-induced MF plasticity in two strains of rats. Quantitative analysis of a series of sections in the rostral dorsal hippocampus showed increases in the CA3a′ area in MEMRI of trained Wistar rats consistent with the increased SO+SP area seen in the Timm's staining. MF plasticity was not seen in the trained Lister-Hooded rats in either MEMRI or in Timm's staining. This indicates the potential of MEMRI for revealing neuro-architectures and plasticity of the hippocampal MF system in vivo in longitudinal studies. •Translaminar sprouting of hippocampal mossy fiber after learning observed in Wistar but not LH rat.•Consistent change of CA3a area detected by MEMRI compared to swim control.•MEMRI enhancement correlated with Timm's staining of mossy fiber.•We demonstrated the potential of imaging plasticity in neuro-architectures.</description><subject>Animal memory</subject><subject>Animals</subject><subject>Brain Mapping - methods</subject><subject>CA3 Region, Hippocampal - cytology</subject><subject>CA3 Region, Hippocampal - physiology</subject><subject>Epilepsy</subject><subject>Hippocampal mossy fibers</subject><subject>Image Processing, Computer-Assisted</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Manganese</subject><subject>Maze Learning - physiology</subject><subject>Memory</subject><subject>Mossy Fibers, Hippocampal - physiology</subject><subject>Mossy Fibers, Hippocampal - ultrastructure</subject><subject>MRI</subject><subject>Neuronal Plasticity - physiology</subject><subject>Presynaptic plasticity</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Rodents</subject><subject>Spatial learning</subject><subject>Spatial Memory - physiology</subject><subject>Studies</subject><subject>Water maze</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkcuO1DAQRSMEYoaBX0CW2LBJsJ34tRxaPEYahMRjbbmdSrdbiR3sBKn5A_6aanoAic2sbN86VeWqW1WE0YZRJl8dmghrTmFyO2g4ZaKhqqG6e1BdMmpEbYTiD0930daaMXNRPSnlQCk1rNOPqwsuuegYE5fVz8-zW4IbyQRTykeyZBdiiDsSYr96KATVeZ_GtAseKb93cYdqDwv4BXqyPZIJJRehQA0Rwx7VD59usABZ9kD2YZ6Td9OM2ZvrFuuVciRD2EImC-QpRAz8SBGeVo8GNxZ4dndeVV_fvvmyeV_ffnx3s7m-rX3XiqVugffcc6cHxre0pRTfRrYOJDV9J4zRijPjvJTGg9CD0j3IQRsKQig5DO1V9fJcd87p2wplsVMoHsYRZ0hrsUx3sqNaqPZ-VEkleaelQPTFf-ghrRln-01Jjv_iEil9pnzGNWQY7JzRxHy0jNqTs_Zg_zlrT85aqiw6i6nP7xqs2wn6v4l_rETg9RkAXN73ANkWH-BkR8jole1TuL_LLxgYusQ</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Zhang, Binbin</creator><creator>Chuang, Kai-Hsiang</creator><creator>Tjio, Ci'en</creator><creator>Chen, Way Cherng</creator><creator>Sheu, Fwu-Shan</creator><creator>Routtenberg, Aryeh</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>201603</creationdate><title>Spatial memory training induces morphological changes detected by manganese-enhanced MRI in the hippocampal CA3 mossy fiber terminal zone</title><author>Zhang, Binbin ; Chuang, Kai-Hsiang ; Tjio, Ci'en ; Chen, Way Cherng ; Sheu, Fwu-Shan ; Routtenberg, Aryeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-3e2d2c2a8f12b0300e2d963ae609d459987219ac669ce58f78de6f890e5576ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animal memory</topic><topic>Animals</topic><topic>Brain Mapping - methods</topic><topic>CA3 Region, Hippocampal - cytology</topic><topic>CA3 Region, Hippocampal - physiology</topic><topic>Epilepsy</topic><topic>Hippocampal mossy fibers</topic><topic>Image Processing, Computer-Assisted</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Manganese</topic><topic>Maze Learning - physiology</topic><topic>Memory</topic><topic>Mossy Fibers, Hippocampal - physiology</topic><topic>Mossy Fibers, Hippocampal - ultrastructure</topic><topic>MRI</topic><topic>Neuronal Plasticity - physiology</topic><topic>Presynaptic plasticity</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Rodents</topic><topic>Spatial learning</topic><topic>Spatial Memory - physiology</topic><topic>Studies</topic><topic>Water maze</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Binbin</creatorcontrib><creatorcontrib>Chuang, Kai-Hsiang</creatorcontrib><creatorcontrib>Tjio, Ci'en</creatorcontrib><creatorcontrib>Chen, Way Cherng</creatorcontrib><creatorcontrib>Sheu, Fwu-Shan</creatorcontrib><creatorcontrib>Routtenberg, Aryeh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medicine (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Binbin</au><au>Chuang, Kai-Hsiang</au><au>Tjio, Ci'en</au><au>Chen, Way Cherng</au><au>Sheu, Fwu-Shan</au><au>Routtenberg, Aryeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial memory training induces morphological changes detected by manganese-enhanced MRI in the hippocampal CA3 mossy fiber terminal zone</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2016-03</date><risdate>2016</risdate><volume>128</volume><spage>227</spage><epage>237</epage><pages>227-237</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Hippocampal mossy fibers (MFs) can show plasticity of their axon terminal arbor consequent to learning a spatial memory task. Such plasticity is seen as translaminar sprouting from the stratum lucidum (SL) of CA3 into the stratum pyramidale (SP) and the stratum oriens (SO). However, the functional role of this presynaptic remodeling is still obscure. In vivo imaging that allows longitudinal observation of such remodeling could provide a deeper understanding of this presynaptic growth phenomenon as it occurs over time. Here we used manganese-enhanced magnetic resonance imaging (MEMRI), which shows a high-contrast area that co-localizes with the MFs. This technique was applied in the detection of learning-induced MF plasticity in two strains of rats. Quantitative analysis of a series of sections in the rostral dorsal hippocampus showed increases in the CA3a′ area in MEMRI of trained Wistar rats consistent with the increased SO+SP area seen in the Timm's staining. MF plasticity was not seen in the trained Lister-Hooded rats in either MEMRI or in Timm's staining. This indicates the potential of MEMRI for revealing neuro-architectures and plasticity of the hippocampal MF system in vivo in longitudinal studies. •Translaminar sprouting of hippocampal mossy fiber after learning observed in Wistar but not LH rat.•Consistent change of CA3a area detected by MEMRI compared to swim control.•MEMRI enhancement correlated with Timm's staining of mossy fiber.•We demonstrated the potential of imaging plasticity in neuro-architectures.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26254115</pmid><doi>10.1016/j.neuroimage.2015.07.084</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2016-03, Vol.128, p.227-237
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_1846408573
source MEDLINE; Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland
subjects Animal memory
Animals
Brain Mapping - methods
CA3 Region, Hippocampal - cytology
CA3 Region, Hippocampal - physiology
Epilepsy
Hippocampal mossy fibers
Image Processing, Computer-Assisted
Magnetic Resonance Imaging - methods
Male
Manganese
Maze Learning - physiology
Memory
Mossy Fibers, Hippocampal - physiology
Mossy Fibers, Hippocampal - ultrastructure
MRI
Neuronal Plasticity - physiology
Presynaptic plasticity
Rats
Rats, Wistar
Rodents
Spatial learning
Spatial Memory - physiology
Studies
Water maze
title Spatial memory training induces morphological changes detected by manganese-enhanced MRI in the hippocampal CA3 mossy fiber terminal zone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20memory%20training%20induces%20morphological%20changes%20detected%20by%20manganese-enhanced%20MRI%20in%20the%20hippocampal%20CA3%20mossy%20fiber%20terminal%20zone&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Zhang,%20Binbin&rft.date=2016-03&rft.volume=128&rft.spage=227&rft.epage=237&rft.pages=227-237&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2015.07.084&rft_dat=%3Cproquest_cross%3E1846408573%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766299826&rft_id=info:pmid/26254115&rft_els_id=S1053811915007041&rfr_iscdi=true