Nowcasting with Data Assimilation: A Case of Global Satellite Mapping of Precipitation

Space–time extrapolation is a key technique in precipitation nowcasting. Motions of patterns are estimated using two or more consecutive images, and the patterns are extrapolated in space and time to obtain their future patterns. Applying space–time extrapolation to satellite-based global precipitat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Weather and forecasting 2016-10, Vol.31 (5), p.1409-1416
Hauptverfasser: Otsuka, Shigenori, Kotsuki, Shunji, Miyoshi, Takemasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1416
container_issue 5
container_start_page 1409
container_title Weather and forecasting
container_volume 31
creator Otsuka, Shigenori
Kotsuki, Shunji
Miyoshi, Takemasa
description Space–time extrapolation is a key technique in precipitation nowcasting. Motions of patterns are estimated using two or more consecutive images, and the patterns are extrapolated in space and time to obtain their future patterns. Applying space–time extrapolation to satellite-based global precipitation data will provide valuable information for regions where ground-based precipitation nowcasts are not available. However, this technique is sensitive to the accuracy of the motion vectors, and over the past few decades, previous studies have investigated methods for obtaining reliable motion vectors such as variational techniques. In this paper, an alternative approach applying data assimilation to precipitation nowcasting is proposed. A prototype extrapolation system is implemented with the local ensemble transform Kalman filter and is tested with the Japan Aerospace Exploration Agency’s Global Satellite Mapping of Precipitation (GSMaP) product. Data assimilation successfully improved the global precipitation nowcasting with the real-case GSMaP data.
doi_str_mv 10.1175/WAF-D-16-0039.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1846403839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1846403839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-7e51223de4c8d6f956a2b1ebe093898d5d29990fe5572790bc4fb99cac7d6b823</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EEqUws1piYXHrR-zYbFFLC1J5SLxGy3EcMErjELuq-PeklInpDvc7R0cfAOcETwjJ-fStWKA5IgJhzNSEHIAR4RQjnLHsEIywlBRJwsUxOInxE2NMOVUj8HofttbE5Nt3uPXpA85NMrCI0a99Y5IP7RUs4MxEB0MNl00oTQOfTHJN45ODd6brdtHh99g76zuffkOn4Kg2TXRnf3cMXhbXz7MbtHpY3s6KFbIspwnljhNKWeUyKytRKy4MLYkrHVZMKlnxiiqlcO04z2mucGmzulTKGptXopSUjcHlvrfrw9fGxaTXPtphnGld2ERNZCYyzCRTA3rxD_0Mm74d1mmiaKaIwIIM1HRP2T7E2Ltad71fm_5bE6x3nvXgWc81EXrnWRP2A7J_b20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924916061</pqid></control><display><type>article</type><title>Nowcasting with Data Assimilation: A Case of Global Satellite Mapping of Precipitation</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Otsuka, Shigenori ; Kotsuki, Shunji ; Miyoshi, Takemasa</creator><creatorcontrib>Otsuka, Shigenori ; Kotsuki, Shunji ; Miyoshi, Takemasa</creatorcontrib><description>Space–time extrapolation is a key technique in precipitation nowcasting. Motions of patterns are estimated using two or more consecutive images, and the patterns are extrapolated in space and time to obtain their future patterns. Applying space–time extrapolation to satellite-based global precipitation data will provide valuable information for regions where ground-based precipitation nowcasts are not available. However, this technique is sensitive to the accuracy of the motion vectors, and over the past few decades, previous studies have investigated methods for obtaining reliable motion vectors such as variational techniques. In this paper, an alternative approach applying data assimilation to precipitation nowcasting is proposed. A prototype extrapolation system is implemented with the local ensemble transform Kalman filter and is tested with the Japan Aerospace Exploration Agency’s Global Satellite Mapping of Precipitation (GSMaP) product. Data assimilation successfully improved the global precipitation nowcasting with the real-case GSMaP data.</description><identifier>ISSN: 0882-8156</identifier><identifier>EISSN: 1520-0434</identifier><identifier>DOI: 10.1175/WAF-D-16-0039.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmospheric precipitations ; Data ; Data assimilation ; Data collection ; Exploration ; Extrapolation ; Global precipitation ; Hydrologic data ; Information dissemination ; Japanese space program ; Kalman filters ; Mapping ; Methods ; Nowcasting ; Precipitation ; Precipitation data ; Prototypes ; Satellites ; Science ; Spacetime ; Studies ; Vectors ; Weather forecasting</subject><ispartof>Weather and forecasting, 2016-10, Vol.31 (5), p.1409-1416</ispartof><rights>Copyright American Meteorological Society 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-7e51223de4c8d6f956a2b1ebe093898d5d29990fe5572790bc4fb99cac7d6b823</citedby><cites>FETCH-LOGICAL-c372t-7e51223de4c8d6f956a2b1ebe093898d5d29990fe5572790bc4fb99cac7d6b823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Otsuka, Shigenori</creatorcontrib><creatorcontrib>Kotsuki, Shunji</creatorcontrib><creatorcontrib>Miyoshi, Takemasa</creatorcontrib><title>Nowcasting with Data Assimilation: A Case of Global Satellite Mapping of Precipitation</title><title>Weather and forecasting</title><description>Space–time extrapolation is a key technique in precipitation nowcasting. Motions of patterns are estimated using two or more consecutive images, and the patterns are extrapolated in space and time to obtain their future patterns. Applying space–time extrapolation to satellite-based global precipitation data will provide valuable information for regions where ground-based precipitation nowcasts are not available. However, this technique is sensitive to the accuracy of the motion vectors, and over the past few decades, previous studies have investigated methods for obtaining reliable motion vectors such as variational techniques. In this paper, an alternative approach applying data assimilation to precipitation nowcasting is proposed. A prototype extrapolation system is implemented with the local ensemble transform Kalman filter and is tested with the Japan Aerospace Exploration Agency’s Global Satellite Mapping of Precipitation (GSMaP) product. Data assimilation successfully improved the global precipitation nowcasting with the real-case GSMaP data.</description><subject>Atmospheric precipitations</subject><subject>Data</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Exploration</subject><subject>Extrapolation</subject><subject>Global precipitation</subject><subject>Hydrologic data</subject><subject>Information dissemination</subject><subject>Japanese space program</subject><subject>Kalman filters</subject><subject>Mapping</subject><subject>Methods</subject><subject>Nowcasting</subject><subject>Precipitation</subject><subject>Precipitation data</subject><subject>Prototypes</subject><subject>Satellites</subject><subject>Science</subject><subject>Spacetime</subject><subject>Studies</subject><subject>Vectors</subject><subject>Weather forecasting</subject><issn>0882-8156</issn><issn>1520-0434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkDtPwzAUhS0EEqUws1piYXHrR-zYbFFLC1J5SLxGy3EcMErjELuq-PeklInpDvc7R0cfAOcETwjJ-fStWKA5IgJhzNSEHIAR4RQjnLHsEIywlBRJwsUxOInxE2NMOVUj8HofttbE5Nt3uPXpA85NMrCI0a99Y5IP7RUs4MxEB0MNl00oTQOfTHJN45ODd6brdtHh99g76zuffkOn4Kg2TXRnf3cMXhbXz7MbtHpY3s6KFbIspwnljhNKWeUyKytRKy4MLYkrHVZMKlnxiiqlcO04z2mucGmzulTKGptXopSUjcHlvrfrw9fGxaTXPtphnGld2ERNZCYyzCRTA3rxD_0Mm74d1mmiaKaIwIIM1HRP2T7E2Ltad71fm_5bE6x3nvXgWc81EXrnWRP2A7J_b20</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Otsuka, Shigenori</creator><creator>Kotsuki, Shunji</creator><creator>Miyoshi, Takemasa</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7RQ</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope></search><sort><creationdate>20161001</creationdate><title>Nowcasting with Data Assimilation: A Case of Global Satellite Mapping of Precipitation</title><author>Otsuka, Shigenori ; Kotsuki, Shunji ; Miyoshi, Takemasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-7e51223de4c8d6f956a2b1ebe093898d5d29990fe5572790bc4fb99cac7d6b823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atmospheric precipitations</topic><topic>Data</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Exploration</topic><topic>Extrapolation</topic><topic>Global precipitation</topic><topic>Hydrologic data</topic><topic>Information dissemination</topic><topic>Japanese space program</topic><topic>Kalman filters</topic><topic>Mapping</topic><topic>Methods</topic><topic>Nowcasting</topic><topic>Precipitation</topic><topic>Precipitation data</topic><topic>Prototypes</topic><topic>Satellites</topic><topic>Science</topic><topic>Spacetime</topic><topic>Studies</topic><topic>Vectors</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otsuka, Shigenori</creatorcontrib><creatorcontrib>Kotsuki, Shunji</creatorcontrib><creatorcontrib>Miyoshi, Takemasa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Career &amp; Technical Education Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Weather and forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otsuka, Shigenori</au><au>Kotsuki, Shunji</au><au>Miyoshi, Takemasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nowcasting with Data Assimilation: A Case of Global Satellite Mapping of Precipitation</atitle><jtitle>Weather and forecasting</jtitle><date>2016-10-01</date><risdate>2016</risdate><volume>31</volume><issue>5</issue><spage>1409</spage><epage>1416</epage><pages>1409-1416</pages><issn>0882-8156</issn><eissn>1520-0434</eissn><abstract>Space–time extrapolation is a key technique in precipitation nowcasting. Motions of patterns are estimated using two or more consecutive images, and the patterns are extrapolated in space and time to obtain their future patterns. Applying space–time extrapolation to satellite-based global precipitation data will provide valuable information for regions where ground-based precipitation nowcasts are not available. However, this technique is sensitive to the accuracy of the motion vectors, and over the past few decades, previous studies have investigated methods for obtaining reliable motion vectors such as variational techniques. In this paper, an alternative approach applying data assimilation to precipitation nowcasting is proposed. A prototype extrapolation system is implemented with the local ensemble transform Kalman filter and is tested with the Japan Aerospace Exploration Agency’s Global Satellite Mapping of Precipitation (GSMaP) product. Data assimilation successfully improved the global precipitation nowcasting with the real-case GSMaP data.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/WAF-D-16-0039.1</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0882-8156
ispartof Weather and forecasting, 2016-10, Vol.31 (5), p.1409-1416
issn 0882-8156
1520-0434
language eng
recordid cdi_proquest_miscellaneous_1846403839
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Atmospheric precipitations
Data
Data assimilation
Data collection
Exploration
Extrapolation
Global precipitation
Hydrologic data
Information dissemination
Japanese space program
Kalman filters
Mapping
Methods
Nowcasting
Precipitation
Precipitation data
Prototypes
Satellites
Science
Spacetime
Studies
Vectors
Weather forecasting
title Nowcasting with Data Assimilation: A Case of Global Satellite Mapping of Precipitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A14%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nowcasting%20with%20Data%20Assimilation:%20A%20Case%20of%20Global%20Satellite%20Mapping%20of%20Precipitation&rft.jtitle=Weather%20and%20forecasting&rft.au=Otsuka,%20Shigenori&rft.date=2016-10-01&rft.volume=31&rft.issue=5&rft.spage=1409&rft.epage=1416&rft.pages=1409-1416&rft.issn=0882-8156&rft.eissn=1520-0434&rft_id=info:doi/10.1175/WAF-D-16-0039.1&rft_dat=%3Cproquest_cross%3E1846403839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924916061&rft_id=info:pmid/&rfr_iscdi=true