Nowcasting with Data Assimilation: A Case of Global Satellite Mapping of Precipitation
Space–time extrapolation is a key technique in precipitation nowcasting. Motions of patterns are estimated using two or more consecutive images, and the patterns are extrapolated in space and time to obtain their future patterns. Applying space–time extrapolation to satellite-based global precipitat...
Gespeichert in:
Veröffentlicht in: | Weather and forecasting 2016-10, Vol.31 (5), p.1409-1416 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1416 |
---|---|
container_issue | 5 |
container_start_page | 1409 |
container_title | Weather and forecasting |
container_volume | 31 |
creator | Otsuka, Shigenori Kotsuki, Shunji Miyoshi, Takemasa |
description | Space–time extrapolation is a key technique in precipitation nowcasting. Motions of patterns are estimated using two or more consecutive images, and the patterns are extrapolated in space and time to obtain their future patterns. Applying space–time extrapolation to satellite-based global precipitation data will provide valuable information for regions where ground-based precipitation nowcasts are not available. However, this technique is sensitive to the accuracy of the motion vectors, and over the past few decades, previous studies have investigated methods for obtaining reliable motion vectors such as variational techniques. In this paper, an alternative approach applying data assimilation to precipitation nowcasting is proposed. A prototype extrapolation system is implemented with the local ensemble transform Kalman filter and is tested with the Japan Aerospace Exploration Agency’s Global Satellite Mapping of Precipitation (GSMaP) product. Data assimilation successfully improved the global precipitation nowcasting with the real-case GSMaP data. |
doi_str_mv | 10.1175/WAF-D-16-0039.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1846403839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1846403839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-7e51223de4c8d6f956a2b1ebe093898d5d29990fe5572790bc4fb99cac7d6b823</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EEqUws1piYXHrR-zYbFFLC1J5SLxGy3EcMErjELuq-PeklInpDvc7R0cfAOcETwjJ-fStWKA5IgJhzNSEHIAR4RQjnLHsEIywlBRJwsUxOInxE2NMOVUj8HofttbE5Nt3uPXpA85NMrCI0a99Y5IP7RUs4MxEB0MNl00oTQOfTHJN45ODd6brdtHh99g76zuffkOn4Kg2TXRnf3cMXhbXz7MbtHpY3s6KFbIspwnljhNKWeUyKytRKy4MLYkrHVZMKlnxiiqlcO04z2mucGmzulTKGptXopSUjcHlvrfrw9fGxaTXPtphnGld2ERNZCYyzCRTA3rxD_0Mm74d1mmiaKaIwIIM1HRP2T7E2Ltad71fm_5bE6x3nvXgWc81EXrnWRP2A7J_b20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924916061</pqid></control><display><type>article</type><title>Nowcasting with Data Assimilation: A Case of Global Satellite Mapping of Precipitation</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Otsuka, Shigenori ; Kotsuki, Shunji ; Miyoshi, Takemasa</creator><creatorcontrib>Otsuka, Shigenori ; Kotsuki, Shunji ; Miyoshi, Takemasa</creatorcontrib><description>Space–time extrapolation is a key technique in precipitation nowcasting. Motions of patterns are estimated using two or more consecutive images, and the patterns are extrapolated in space and time to obtain their future patterns. Applying space–time extrapolation to satellite-based global precipitation data will provide valuable information for regions where ground-based precipitation nowcasts are not available. However, this technique is sensitive to the accuracy of the motion vectors, and over the past few decades, previous studies have investigated methods for obtaining reliable motion vectors such as variational techniques. In this paper, an alternative approach applying data assimilation to precipitation nowcasting is proposed. A prototype extrapolation system is implemented with the local ensemble transform Kalman filter and is tested with the Japan Aerospace Exploration Agency’s Global Satellite Mapping of Precipitation (GSMaP) product. Data assimilation successfully improved the global precipitation nowcasting with the real-case GSMaP data.</description><identifier>ISSN: 0882-8156</identifier><identifier>EISSN: 1520-0434</identifier><identifier>DOI: 10.1175/WAF-D-16-0039.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmospheric precipitations ; Data ; Data assimilation ; Data collection ; Exploration ; Extrapolation ; Global precipitation ; Hydrologic data ; Information dissemination ; Japanese space program ; Kalman filters ; Mapping ; Methods ; Nowcasting ; Precipitation ; Precipitation data ; Prototypes ; Satellites ; Science ; Spacetime ; Studies ; Vectors ; Weather forecasting</subject><ispartof>Weather and forecasting, 2016-10, Vol.31 (5), p.1409-1416</ispartof><rights>Copyright American Meteorological Society 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-7e51223de4c8d6f956a2b1ebe093898d5d29990fe5572790bc4fb99cac7d6b823</citedby><cites>FETCH-LOGICAL-c372t-7e51223de4c8d6f956a2b1ebe093898d5d29990fe5572790bc4fb99cac7d6b823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Otsuka, Shigenori</creatorcontrib><creatorcontrib>Kotsuki, Shunji</creatorcontrib><creatorcontrib>Miyoshi, Takemasa</creatorcontrib><title>Nowcasting with Data Assimilation: A Case of Global Satellite Mapping of Precipitation</title><title>Weather and forecasting</title><description>Space–time extrapolation is a key technique in precipitation nowcasting. Motions of patterns are estimated using two or more consecutive images, and the patterns are extrapolated in space and time to obtain their future patterns. Applying space–time extrapolation to satellite-based global precipitation data will provide valuable information for regions where ground-based precipitation nowcasts are not available. However, this technique is sensitive to the accuracy of the motion vectors, and over the past few decades, previous studies have investigated methods for obtaining reliable motion vectors such as variational techniques. In this paper, an alternative approach applying data assimilation to precipitation nowcasting is proposed. A prototype extrapolation system is implemented with the local ensemble transform Kalman filter and is tested with the Japan Aerospace Exploration Agency’s Global Satellite Mapping of Precipitation (GSMaP) product. Data assimilation successfully improved the global precipitation nowcasting with the real-case GSMaP data.</description><subject>Atmospheric precipitations</subject><subject>Data</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Exploration</subject><subject>Extrapolation</subject><subject>Global precipitation</subject><subject>Hydrologic data</subject><subject>Information dissemination</subject><subject>Japanese space program</subject><subject>Kalman filters</subject><subject>Mapping</subject><subject>Methods</subject><subject>Nowcasting</subject><subject>Precipitation</subject><subject>Precipitation data</subject><subject>Prototypes</subject><subject>Satellites</subject><subject>Science</subject><subject>Spacetime</subject><subject>Studies</subject><subject>Vectors</subject><subject>Weather forecasting</subject><issn>0882-8156</issn><issn>1520-0434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkDtPwzAUhS0EEqUws1piYXHrR-zYbFFLC1J5SLxGy3EcMErjELuq-PeklInpDvc7R0cfAOcETwjJ-fStWKA5IgJhzNSEHIAR4RQjnLHsEIywlBRJwsUxOInxE2NMOVUj8HofttbE5Nt3uPXpA85NMrCI0a99Y5IP7RUs4MxEB0MNl00oTQOfTHJN45ODd6brdtHh99g76zuffkOn4Kg2TXRnf3cMXhbXz7MbtHpY3s6KFbIspwnljhNKWeUyKytRKy4MLYkrHVZMKlnxiiqlcO04z2mucGmzulTKGptXopSUjcHlvrfrw9fGxaTXPtphnGld2ERNZCYyzCRTA3rxD_0Mm74d1mmiaKaIwIIM1HRP2T7E2Ltad71fm_5bE6x3nvXgWc81EXrnWRP2A7J_b20</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Otsuka, Shigenori</creator><creator>Kotsuki, Shunji</creator><creator>Miyoshi, Takemasa</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7RQ</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope></search><sort><creationdate>20161001</creationdate><title>Nowcasting with Data Assimilation: A Case of Global Satellite Mapping of Precipitation</title><author>Otsuka, Shigenori ; Kotsuki, Shunji ; Miyoshi, Takemasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-7e51223de4c8d6f956a2b1ebe093898d5d29990fe5572790bc4fb99cac7d6b823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atmospheric precipitations</topic><topic>Data</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Exploration</topic><topic>Extrapolation</topic><topic>Global precipitation</topic><topic>Hydrologic data</topic><topic>Information dissemination</topic><topic>Japanese space program</topic><topic>Kalman filters</topic><topic>Mapping</topic><topic>Methods</topic><topic>Nowcasting</topic><topic>Precipitation</topic><topic>Precipitation data</topic><topic>Prototypes</topic><topic>Satellites</topic><topic>Science</topic><topic>Spacetime</topic><topic>Studies</topic><topic>Vectors</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otsuka, Shigenori</creatorcontrib><creatorcontrib>Kotsuki, Shunji</creatorcontrib><creatorcontrib>Miyoshi, Takemasa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Career & Technical Education Database</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Weather and forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otsuka, Shigenori</au><au>Kotsuki, Shunji</au><au>Miyoshi, Takemasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nowcasting with Data Assimilation: A Case of Global Satellite Mapping of Precipitation</atitle><jtitle>Weather and forecasting</jtitle><date>2016-10-01</date><risdate>2016</risdate><volume>31</volume><issue>5</issue><spage>1409</spage><epage>1416</epage><pages>1409-1416</pages><issn>0882-8156</issn><eissn>1520-0434</eissn><abstract>Space–time extrapolation is a key technique in precipitation nowcasting. Motions of patterns are estimated using two or more consecutive images, and the patterns are extrapolated in space and time to obtain their future patterns. Applying space–time extrapolation to satellite-based global precipitation data will provide valuable information for regions where ground-based precipitation nowcasts are not available. However, this technique is sensitive to the accuracy of the motion vectors, and over the past few decades, previous studies have investigated methods for obtaining reliable motion vectors such as variational techniques. In this paper, an alternative approach applying data assimilation to precipitation nowcasting is proposed. A prototype extrapolation system is implemented with the local ensemble transform Kalman filter and is tested with the Japan Aerospace Exploration Agency’s Global Satellite Mapping of Precipitation (GSMaP) product. Data assimilation successfully improved the global precipitation nowcasting with the real-case GSMaP data.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/WAF-D-16-0039.1</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0882-8156 |
ispartof | Weather and forecasting, 2016-10, Vol.31 (5), p.1409-1416 |
issn | 0882-8156 1520-0434 |
language | eng |
recordid | cdi_proquest_miscellaneous_1846403839 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Atmospheric precipitations Data Data assimilation Data collection Exploration Extrapolation Global precipitation Hydrologic data Information dissemination Japanese space program Kalman filters Mapping Methods Nowcasting Precipitation Precipitation data Prototypes Satellites Science Spacetime Studies Vectors Weather forecasting |
title | Nowcasting with Data Assimilation: A Case of Global Satellite Mapping of Precipitation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A14%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nowcasting%20with%20Data%20Assimilation:%20A%20Case%20of%20Global%20Satellite%20Mapping%20of%20Precipitation&rft.jtitle=Weather%20and%20forecasting&rft.au=Otsuka,%20Shigenori&rft.date=2016-10-01&rft.volume=31&rft.issue=5&rft.spage=1409&rft.epage=1416&rft.pages=1409-1416&rft.issn=0882-8156&rft.eissn=1520-0434&rft_id=info:doi/10.1175/WAF-D-16-0039.1&rft_dat=%3Cproquest_cross%3E1846403839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924916061&rft_id=info:pmid/&rfr_iscdi=true |