Synthesis of copper-containing bioactive glass nanoparticles using a modified Stöber method for biomedical applications
[Display omitted] •Cu-BGNs could be synthesized using a convenient modified Stöber method.•Cu-BGNs were highly dispersed with a uniformly spherical shape (400–450nm).•Copper content in Cu-BGNs could be tailored.•Cu-BGNs exhibited a rapid apatite formation upon immersion in SBF.•Cu-BGNs could release...
Gespeichert in:
Veröffentlicht in: | Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2017-02, Vol.150, p.159-167 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 167 |
---|---|
container_issue | |
container_start_page | 159 |
container_title | Colloids and surfaces, B, Biointerfaces |
container_volume | 150 |
creator | Zheng, Kai Dai, Xinyi Lu, Miao Hüser, Norbert Taccardi, Nicola Boccaccini, Aldo. R. |
description | [Display omitted]
•Cu-BGNs could be synthesized using a convenient modified Stöber method.•Cu-BGNs were highly dispersed with a uniformly spherical shape (400–450nm).•Copper content in Cu-BGNs could be tailored.•Cu-BGNs exhibited a rapid apatite formation upon immersion in SBF.•Cu-BGNs could release copper ions for up to at least 14days.
Copper (Cu)-containing bioactive glasses (BGs) are attracting attention for bone regeneration and wound healing since they have bone-bonding capability and potential osteogenesis and angiogenesis properties. In this study, highly dispersed and spherical Cu-containing bioactive glass nanoparticles (Cu-BGNs) were successfully synthesized via a modified Stöber method. The content of incorporated Cu in the particles could be tailored by adjusting the amount of the added Cu precursor, a procedure that had no significant effects on the morphological and structural characteristics of the nanoparticles. Cu-BGNs exhibited satisfactory apatite-forming ability, as a large quantity of apatite could form on Cu-BGNs pellets after immersion in simulated body fluid for just 3days. The incorporation of Cu exhibited positive effects on the apatite formation. In addition, both Si and Cu ions were released from the Cu-BGN in a sustained manner for at least 14days in cell culture medium, indicating the potential of the BGN as promising carriers for delivering therapeutic Cu ions. Moreover, Cu-BGNs showed no significant cytotoxicity towards human mesenchymal stem cells and fibroblast cells at concentrations of 100, 10 and 1μg/mL. Taken together, the results suggest that Cu-BGNs are promising nanoparticulate fillers to develop nanocomposites for biomedical applications especially in bone regeneration and wound healing. |
doi_str_mv | 10.1016/j.colsurfb.2016.11.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1846026641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776516307949</els_id><sourcerecordid>1846026641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-68b4509f8c0196fef30c0809f3e7df88863b98c3b9e0d22506f23ebeaee55fc3</originalsourceid><addsrcrecordid>eNqFkMFOHSEUhklTU6_aVzAsu5kRmBlgdhrTqolJF9c9YZiDcjMDU2BMfbG-gC8mN1fddsMP5Dvn5HwInVNSU0L5xa42YUprtEPNyrumtC7xBW2oFE3VNlx8RRvSM1EJwbtjdJLSjhDCWiq-oWMmetqyjm3Q3-2Lz0-QXMLBYhOWBWJlgs_aeecf8eCCNtk9A36cdErYax8WHbMzEyS8pj2j8RxGZx2MeJtf_w0Q8Qz5KYzYhrjvMMPojJ6wXpapXLILPp2hI6unBN_f8xQ9_Pr5cH1b3f--ubu-uq9MK2iuuBzajvRWGkJ7bsE2xBBZPhoQo5VS8mbopSkHkJGxjnDLGhhAA3SdNc0p-nFou8TwZ4WU1eySgWnSHsKaFJUtJ4zzlhaUH1ATQ0oRrFqim3V8UZSovXS1Ux_S1V66olSVKIXn7zPWoaz6WfZhuQCXBwDKos8OokrGgTdFSwST1Rjc_2a8AXaampw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846026641</pqid></control><display><type>article</type><title>Synthesis of copper-containing bioactive glass nanoparticles using a modified Stöber method for biomedical applications</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zheng, Kai ; Dai, Xinyi ; Lu, Miao ; Hüser, Norbert ; Taccardi, Nicola ; Boccaccini, Aldo. R.</creator><creatorcontrib>Zheng, Kai ; Dai, Xinyi ; Lu, Miao ; Hüser, Norbert ; Taccardi, Nicola ; Boccaccini, Aldo. R.</creatorcontrib><description>[Display omitted]
•Cu-BGNs could be synthesized using a convenient modified Stöber method.•Cu-BGNs were highly dispersed with a uniformly spherical shape (400–450nm).•Copper content in Cu-BGNs could be tailored.•Cu-BGNs exhibited a rapid apatite formation upon immersion in SBF.•Cu-BGNs could release copper ions for up to at least 14days.
Copper (Cu)-containing bioactive glasses (BGs) are attracting attention for bone regeneration and wound healing since they have bone-bonding capability and potential osteogenesis and angiogenesis properties. In this study, highly dispersed and spherical Cu-containing bioactive glass nanoparticles (Cu-BGNs) were successfully synthesized via a modified Stöber method. The content of incorporated Cu in the particles could be tailored by adjusting the amount of the added Cu precursor, a procedure that had no significant effects on the morphological and structural characteristics of the nanoparticles. Cu-BGNs exhibited satisfactory apatite-forming ability, as a large quantity of apatite could form on Cu-BGNs pellets after immersion in simulated body fluid for just 3days. The incorporation of Cu exhibited positive effects on the apatite formation. In addition, both Si and Cu ions were released from the Cu-BGN in a sustained manner for at least 14days in cell culture medium, indicating the potential of the BGN as promising carriers for delivering therapeutic Cu ions. Moreover, Cu-BGNs showed no significant cytotoxicity towards human mesenchymal stem cells and fibroblast cells at concentrations of 100, 10 and 1μg/mL. Taken together, the results suggest that Cu-BGNs are promising nanoparticulate fillers to develop nanocomposites for biomedical applications especially in bone regeneration and wound healing.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2016.11.016</identifier><identifier>PMID: 27914252</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Apatite formation ; Apatites - chemistry ; Bioactive glass nanoparticles ; Biocompatible Materials - chemistry ; Bone Regeneration ; Cell Culture Techniques - methods ; Copper ; Copper - chemistry ; Fibroblasts - cytology ; Glass - chemistry ; Humans ; Ion release ; Ions ; Mesenchymal Stromal Cells - cytology ; Nanocomposites - chemistry ; Nanoparticles - chemistry ; Nanotechnology - methods ; Neovascularization, Pathologic ; Osteogenesis ; Particle Size ; Spectroscopy, Fourier Transform Infrared ; Stöber method ; Wound Healing ; X-Ray Diffraction</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2017-02, Vol.150, p.159-167</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-68b4509f8c0196fef30c0809f3e7df88863b98c3b9e0d22506f23ebeaee55fc3</citedby><cites>FETCH-LOGICAL-c471t-68b4509f8c0196fef30c0809f3e7df88863b98c3b9e0d22506f23ebeaee55fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.colsurfb.2016.11.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27914252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Kai</creatorcontrib><creatorcontrib>Dai, Xinyi</creatorcontrib><creatorcontrib>Lu, Miao</creatorcontrib><creatorcontrib>Hüser, Norbert</creatorcontrib><creatorcontrib>Taccardi, Nicola</creatorcontrib><creatorcontrib>Boccaccini, Aldo. R.</creatorcontrib><title>Synthesis of copper-containing bioactive glass nanoparticles using a modified Stöber method for biomedical applications</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>[Display omitted]
•Cu-BGNs could be synthesized using a convenient modified Stöber method.•Cu-BGNs were highly dispersed with a uniformly spherical shape (400–450nm).•Copper content in Cu-BGNs could be tailored.•Cu-BGNs exhibited a rapid apatite formation upon immersion in SBF.•Cu-BGNs could release copper ions for up to at least 14days.
Copper (Cu)-containing bioactive glasses (BGs) are attracting attention for bone regeneration and wound healing since they have bone-bonding capability and potential osteogenesis and angiogenesis properties. In this study, highly dispersed and spherical Cu-containing bioactive glass nanoparticles (Cu-BGNs) were successfully synthesized via a modified Stöber method. The content of incorporated Cu in the particles could be tailored by adjusting the amount of the added Cu precursor, a procedure that had no significant effects on the morphological and structural characteristics of the nanoparticles. Cu-BGNs exhibited satisfactory apatite-forming ability, as a large quantity of apatite could form on Cu-BGNs pellets after immersion in simulated body fluid for just 3days. The incorporation of Cu exhibited positive effects on the apatite formation. In addition, both Si and Cu ions were released from the Cu-BGN in a sustained manner for at least 14days in cell culture medium, indicating the potential of the BGN as promising carriers for delivering therapeutic Cu ions. Moreover, Cu-BGNs showed no significant cytotoxicity towards human mesenchymal stem cells and fibroblast cells at concentrations of 100, 10 and 1μg/mL. Taken together, the results suggest that Cu-BGNs are promising nanoparticulate fillers to develop nanocomposites for biomedical applications especially in bone regeneration and wound healing.</description><subject>Apatite formation</subject><subject>Apatites - chemistry</subject><subject>Bioactive glass nanoparticles</subject><subject>Biocompatible Materials - chemistry</subject><subject>Bone Regeneration</subject><subject>Cell Culture Techniques - methods</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>Fibroblasts - cytology</subject><subject>Glass - chemistry</subject><subject>Humans</subject><subject>Ion release</subject><subject>Ions</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Nanocomposites - chemistry</subject><subject>Nanoparticles - chemistry</subject><subject>Nanotechnology - methods</subject><subject>Neovascularization, Pathologic</subject><subject>Osteogenesis</subject><subject>Particle Size</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Stöber method</subject><subject>Wound Healing</subject><subject>X-Ray Diffraction</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFOHSEUhklTU6_aVzAsu5kRmBlgdhrTqolJF9c9YZiDcjMDU2BMfbG-gC8mN1fddsMP5Dvn5HwInVNSU0L5xa42YUprtEPNyrumtC7xBW2oFE3VNlx8RRvSM1EJwbtjdJLSjhDCWiq-oWMmetqyjm3Q3-2Lz0-QXMLBYhOWBWJlgs_aeecf8eCCNtk9A36cdErYax8WHbMzEyS8pj2j8RxGZx2MeJtf_w0Q8Qz5KYzYhrjvMMPojJ6wXpapXLILPp2hI6unBN_f8xQ9_Pr5cH1b3f--ubu-uq9MK2iuuBzajvRWGkJ7bsE2xBBZPhoQo5VS8mbopSkHkJGxjnDLGhhAA3SdNc0p-nFou8TwZ4WU1eySgWnSHsKaFJUtJ4zzlhaUH1ATQ0oRrFqim3V8UZSovXS1Ux_S1V66olSVKIXn7zPWoaz6WfZhuQCXBwDKos8OokrGgTdFSwST1Rjc_2a8AXaampw</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Zheng, Kai</creator><creator>Dai, Xinyi</creator><creator>Lu, Miao</creator><creator>Hüser, Norbert</creator><creator>Taccardi, Nicola</creator><creator>Boccaccini, Aldo. R.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170201</creationdate><title>Synthesis of copper-containing bioactive glass nanoparticles using a modified Stöber method for biomedical applications</title><author>Zheng, Kai ; Dai, Xinyi ; Lu, Miao ; Hüser, Norbert ; Taccardi, Nicola ; Boccaccini, Aldo. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-68b4509f8c0196fef30c0809f3e7df88863b98c3b9e0d22506f23ebeaee55fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Apatite formation</topic><topic>Apatites - chemistry</topic><topic>Bioactive glass nanoparticles</topic><topic>Biocompatible Materials - chemistry</topic><topic>Bone Regeneration</topic><topic>Cell Culture Techniques - methods</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>Fibroblasts - cytology</topic><topic>Glass - chemistry</topic><topic>Humans</topic><topic>Ion release</topic><topic>Ions</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Nanocomposites - chemistry</topic><topic>Nanoparticles - chemistry</topic><topic>Nanotechnology - methods</topic><topic>Neovascularization, Pathologic</topic><topic>Osteogenesis</topic><topic>Particle Size</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Stöber method</topic><topic>Wound Healing</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Kai</creatorcontrib><creatorcontrib>Dai, Xinyi</creatorcontrib><creatorcontrib>Lu, Miao</creatorcontrib><creatorcontrib>Hüser, Norbert</creatorcontrib><creatorcontrib>Taccardi, Nicola</creatorcontrib><creatorcontrib>Boccaccini, Aldo. R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Kai</au><au>Dai, Xinyi</au><au>Lu, Miao</au><au>Hüser, Norbert</au><au>Taccardi, Nicola</au><au>Boccaccini, Aldo. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of copper-containing bioactive glass nanoparticles using a modified Stöber method for biomedical applications</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>150</volume><spage>159</spage><epage>167</epage><pages>159-167</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>[Display omitted]
•Cu-BGNs could be synthesized using a convenient modified Stöber method.•Cu-BGNs were highly dispersed with a uniformly spherical shape (400–450nm).•Copper content in Cu-BGNs could be tailored.•Cu-BGNs exhibited a rapid apatite formation upon immersion in SBF.•Cu-BGNs could release copper ions for up to at least 14days.
Copper (Cu)-containing bioactive glasses (BGs) are attracting attention for bone regeneration and wound healing since they have bone-bonding capability and potential osteogenesis and angiogenesis properties. In this study, highly dispersed and spherical Cu-containing bioactive glass nanoparticles (Cu-BGNs) were successfully synthesized via a modified Stöber method. The content of incorporated Cu in the particles could be tailored by adjusting the amount of the added Cu precursor, a procedure that had no significant effects on the morphological and structural characteristics of the nanoparticles. Cu-BGNs exhibited satisfactory apatite-forming ability, as a large quantity of apatite could form on Cu-BGNs pellets after immersion in simulated body fluid for just 3days. The incorporation of Cu exhibited positive effects on the apatite formation. In addition, both Si and Cu ions were released from the Cu-BGN in a sustained manner for at least 14days in cell culture medium, indicating the potential of the BGN as promising carriers for delivering therapeutic Cu ions. Moreover, Cu-BGNs showed no significant cytotoxicity towards human mesenchymal stem cells and fibroblast cells at concentrations of 100, 10 and 1μg/mL. Taken together, the results suggest that Cu-BGNs are promising nanoparticulate fillers to develop nanocomposites for biomedical applications especially in bone regeneration and wound healing.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27914252</pmid><doi>10.1016/j.colsurfb.2016.11.016</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7765 |
ispartof | Colloids and surfaces, B, Biointerfaces, 2017-02, Vol.150, p.159-167 |
issn | 0927-7765 1873-4367 |
language | eng |
recordid | cdi_proquest_miscellaneous_1846026641 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Apatite formation Apatites - chemistry Bioactive glass nanoparticles Biocompatible Materials - chemistry Bone Regeneration Cell Culture Techniques - methods Copper Copper - chemistry Fibroblasts - cytology Glass - chemistry Humans Ion release Ions Mesenchymal Stromal Cells - cytology Nanocomposites - chemistry Nanoparticles - chemistry Nanotechnology - methods Neovascularization, Pathologic Osteogenesis Particle Size Spectroscopy, Fourier Transform Infrared Stöber method Wound Healing X-Ray Diffraction |
title | Synthesis of copper-containing bioactive glass nanoparticles using a modified Stöber method for biomedical applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A04%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20copper-containing%20bioactive%20glass%20nanoparticles%20using%20a%20modified%20St%C3%B6ber%20method%20for%20biomedical%20applications&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Zheng,%20Kai&rft.date=2017-02-01&rft.volume=150&rft.spage=159&rft.epage=167&rft.pages=159-167&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2016.11.016&rft_dat=%3Cproquest_cross%3E1846026641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1846026641&rft_id=info:pmid/27914252&rft_els_id=S0927776516307949&rfr_iscdi=true |