Oxygen reduction reaction at LaxCa1-xMnO3 nanostructures: interplay between A-site segregation and B-site valency

The mean activity of surface Mn sites at LaxCa1-xMnO3 nanostructures towards the oxygen reduction reaction (ORR) in alkaline solution is assessed as a function of the oxide composition. Highly active oxide nanoparticles were synthesised by an ionic liquid-based route, yielding phase-pure nanoparticl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis science & technology 2016-01, Vol.6 (19), p.7231-7238
Hauptverfasser: Celorrio, Veronica, Calvillo, Laura, Dann, Ellie, Granozzi, Gaetano, Aguadero, Ainara, Kramer, Denis, Russell, Andrea E, Fermin, David J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7238
container_issue 19
container_start_page 7231
container_title Catalysis science & technology
container_volume 6
creator Celorrio, Veronica
Calvillo, Laura
Dann, Ellie
Granozzi, Gaetano
Aguadero, Ainara
Kramer, Denis
Russell, Andrea E
Fermin, David J
description The mean activity of surface Mn sites at LaxCa1-xMnO3 nanostructures towards the oxygen reduction reaction (ORR) in alkaline solution is assessed as a function of the oxide composition. Highly active oxide nanoparticles were synthesised by an ionic liquid-based route, yielding phase-pure nanoparticles, across the entire range of compositions, with sizes between 20 and 35 nm. The bulk vs. surface composition and structure are investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES). These techniques allow quantification of not only changes in the mean oxidation state of Mn as a function of x, but also the extent of A-site surface segregation. Both trends manifest themselves in the electrochemical responses associated with surface Mn sites in 0.1 M KOH solution. The characteristic redox signatures of Mn sites are used to estimate their effective surface number density. This parameter allows comparing, for the first time, the mean electrocatalytic activity of surface Mn sites as a function of the LaxCa1-xMnO3 composition. The ensemble of experimental data provides a consistent picture in which increasing electron density at the Mn sites leads to an increase in the ORR activity. We also demonstrate that normalisation of electrochemical activity by mass or specific surface area may result in inaccurate structure-activity correlations.
doi_str_mv 10.1039/c6cy01105e
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845838527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845838527</sourcerecordid><originalsourceid>FETCH-LOGICAL-g327t-c552056ba3154204971f859166cbe56ee2412052c8e914446a12da077923daf23</originalsourceid><addsrcrecordid>eNo9j01Lw0AURQdRsNRu_AWzdBOdN19J3NWiVYh0o-vyOnkNkThpMxNt_r2RiHfzDo_LgcvYNYhbECq_c9YNAkAYOmMzKbROdGrh_J-NumSLED7EGJ2DyOSMHTenoSLPOyp7F-v2l3ACjLzA0wohOb36jeIefRtiN9b6jsI9r32k7tDgwHcUv2mULJNQR-KBqo4qnCS-5A_T-wsb8m64Yhd7bAIt_u6cvT89vq2ek2Kzflkti6RSMo2JM0YKY3eowOhxQJ7CPjM5WOt2ZCyR1DAWpMsoB621RZAlijTNpSpxL9Wc3UzeQ9ceewpx-1kHR02Dnto-bCHTJlOZkan6AfxLXek</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845838527</pqid></control><display><type>article</type><title>Oxygen reduction reaction at LaxCa1-xMnO3 nanostructures: interplay between A-site segregation and B-site valency</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Celorrio, Veronica ; Calvillo, Laura ; Dann, Ellie ; Granozzi, Gaetano ; Aguadero, Ainara ; Kramer, Denis ; Russell, Andrea E ; Fermin, David J</creator><creatorcontrib>Celorrio, Veronica ; Calvillo, Laura ; Dann, Ellie ; Granozzi, Gaetano ; Aguadero, Ainara ; Kramer, Denis ; Russell, Andrea E ; Fermin, David J</creatorcontrib><description>The mean activity of surface Mn sites at LaxCa1-xMnO3 nanostructures towards the oxygen reduction reaction (ORR) in alkaline solution is assessed as a function of the oxide composition. Highly active oxide nanoparticles were synthesised by an ionic liquid-based route, yielding phase-pure nanoparticles, across the entire range of compositions, with sizes between 20 and 35 nm. The bulk vs. surface composition and structure are investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES). These techniques allow quantification of not only changes in the mean oxidation state of Mn as a function of x, but also the extent of A-site surface segregation. Both trends manifest themselves in the electrochemical responses associated with surface Mn sites in 0.1 M KOH solution. The characteristic redox signatures of Mn sites are used to estimate their effective surface number density. This parameter allows comparing, for the first time, the mean electrocatalytic activity of surface Mn sites as a function of the LaxCa1-xMnO3 composition. The ensemble of experimental data provides a consistent picture in which increasing electron density at the Mn sites leads to an increase in the ORR activity. We also demonstrate that normalisation of electrochemical activity by mass or specific surface area may result in inaccurate structure-activity correlations.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/c6cy01105e</identifier><language>eng</language><subject>Nanoparticles ; Nanostructure ; Oxides ; Oxygen ; Reduction ; Segregations ; Surface chemistry ; X-rays</subject><ispartof>Catalysis science &amp; technology, 2016-01, Vol.6 (19), p.7231-7238</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>Celorrio, Veronica</creatorcontrib><creatorcontrib>Calvillo, Laura</creatorcontrib><creatorcontrib>Dann, Ellie</creatorcontrib><creatorcontrib>Granozzi, Gaetano</creatorcontrib><creatorcontrib>Aguadero, Ainara</creatorcontrib><creatorcontrib>Kramer, Denis</creatorcontrib><creatorcontrib>Russell, Andrea E</creatorcontrib><creatorcontrib>Fermin, David J</creatorcontrib><title>Oxygen reduction reaction at LaxCa1-xMnO3 nanostructures: interplay between A-site segregation and B-site valency</title><title>Catalysis science &amp; technology</title><description>The mean activity of surface Mn sites at LaxCa1-xMnO3 nanostructures towards the oxygen reduction reaction (ORR) in alkaline solution is assessed as a function of the oxide composition. Highly active oxide nanoparticles were synthesised by an ionic liquid-based route, yielding phase-pure nanoparticles, across the entire range of compositions, with sizes between 20 and 35 nm. The bulk vs. surface composition and structure are investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES). These techniques allow quantification of not only changes in the mean oxidation state of Mn as a function of x, but also the extent of A-site surface segregation. Both trends manifest themselves in the electrochemical responses associated with surface Mn sites in 0.1 M KOH solution. The characteristic redox signatures of Mn sites are used to estimate their effective surface number density. This parameter allows comparing, for the first time, the mean electrocatalytic activity of surface Mn sites as a function of the LaxCa1-xMnO3 composition. The ensemble of experimental data provides a consistent picture in which increasing electron density at the Mn sites leads to an increase in the ORR activity. We also demonstrate that normalisation of electrochemical activity by mass or specific surface area may result in inaccurate structure-activity correlations.</description><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Oxides</subject><subject>Oxygen</subject><subject>Reduction</subject><subject>Segregations</subject><subject>Surface chemistry</subject><subject>X-rays</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9j01Lw0AURQdRsNRu_AWzdBOdN19J3NWiVYh0o-vyOnkNkThpMxNt_r2RiHfzDo_LgcvYNYhbECq_c9YNAkAYOmMzKbROdGrh_J-NumSLED7EGJ2DyOSMHTenoSLPOyp7F-v2l3ACjLzA0wohOb36jeIefRtiN9b6jsI9r32k7tDgwHcUv2mULJNQR-KBqo4qnCS-5A_T-wsb8m64Yhd7bAIt_u6cvT89vq2ek2Kzflkti6RSMo2JM0YKY3eowOhxQJ7CPjM5WOt2ZCyR1DAWpMsoB621RZAlijTNpSpxL9Wc3UzeQ9ceewpx-1kHR02Dnto-bCHTJlOZkan6AfxLXek</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Celorrio, Veronica</creator><creator>Calvillo, Laura</creator><creator>Dann, Ellie</creator><creator>Granozzi, Gaetano</creator><creator>Aguadero, Ainara</creator><creator>Kramer, Denis</creator><creator>Russell, Andrea E</creator><creator>Fermin, David J</creator><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20160101</creationdate><title>Oxygen reduction reaction at LaxCa1-xMnO3 nanostructures: interplay between A-site segregation and B-site valency</title><author>Celorrio, Veronica ; Calvillo, Laura ; Dann, Ellie ; Granozzi, Gaetano ; Aguadero, Ainara ; Kramer, Denis ; Russell, Andrea E ; Fermin, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g327t-c552056ba3154204971f859166cbe56ee2412052c8e914446a12da077923daf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Oxides</topic><topic>Oxygen</topic><topic>Reduction</topic><topic>Segregations</topic><topic>Surface chemistry</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Celorrio, Veronica</creatorcontrib><creatorcontrib>Calvillo, Laura</creatorcontrib><creatorcontrib>Dann, Ellie</creatorcontrib><creatorcontrib>Granozzi, Gaetano</creatorcontrib><creatorcontrib>Aguadero, Ainara</creatorcontrib><creatorcontrib>Kramer, Denis</creatorcontrib><creatorcontrib>Russell, Andrea E</creatorcontrib><creatorcontrib>Fermin, David J</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Catalysis science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Celorrio, Veronica</au><au>Calvillo, Laura</au><au>Dann, Ellie</au><au>Granozzi, Gaetano</au><au>Aguadero, Ainara</au><au>Kramer, Denis</au><au>Russell, Andrea E</au><au>Fermin, David J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen reduction reaction at LaxCa1-xMnO3 nanostructures: interplay between A-site segregation and B-site valency</atitle><jtitle>Catalysis science &amp; technology</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>6</volume><issue>19</issue><spage>7231</spage><epage>7238</epage><pages>7231-7238</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>The mean activity of surface Mn sites at LaxCa1-xMnO3 nanostructures towards the oxygen reduction reaction (ORR) in alkaline solution is assessed as a function of the oxide composition. Highly active oxide nanoparticles were synthesised by an ionic liquid-based route, yielding phase-pure nanoparticles, across the entire range of compositions, with sizes between 20 and 35 nm. The bulk vs. surface composition and structure are investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES). These techniques allow quantification of not only changes in the mean oxidation state of Mn as a function of x, but also the extent of A-site surface segregation. Both trends manifest themselves in the electrochemical responses associated with surface Mn sites in 0.1 M KOH solution. The characteristic redox signatures of Mn sites are used to estimate their effective surface number density. This parameter allows comparing, for the first time, the mean electrocatalytic activity of surface Mn sites as a function of the LaxCa1-xMnO3 composition. The ensemble of experimental data provides a consistent picture in which increasing electron density at the Mn sites leads to an increase in the ORR activity. We also demonstrate that normalisation of electrochemical activity by mass or specific surface area may result in inaccurate structure-activity correlations.</abstract><doi>10.1039/c6cy01105e</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2044-4753
ispartof Catalysis science & technology, 2016-01, Vol.6 (19), p.7231-7238
issn 2044-4753
2044-4761
language eng
recordid cdi_proquest_miscellaneous_1845838527
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Nanoparticles
Nanostructure
Oxides
Oxygen
Reduction
Segregations
Surface chemistry
X-rays
title Oxygen reduction reaction at LaxCa1-xMnO3 nanostructures: interplay between A-site segregation and B-site valency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T14%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20reduction%20reaction%20at%20LaxCa1-xMnO3%20nanostructures:%20interplay%20between%20A-site%20segregation%20and%20B-site%20valency&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Celorrio,%20Veronica&rft.date=2016-01-01&rft.volume=6&rft.issue=19&rft.spage=7231&rft.epage=7238&rft.pages=7231-7238&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/c6cy01105e&rft_dat=%3Cproquest%3E1845838527%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845838527&rft_id=info:pmid/&rfr_iscdi=true