Galaxies in the EAGLE hydrodynamical simulation and in the Durham and Munich semi-analytical models
We compare global predictions from the eagle hydrodynamical simulation, and two semi-analytic (SA) models of galaxy formation, l-galaxies and galform. All three models include the key physical processes for the formation and evolution of galaxies and their parameters are calibrated against a small n...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2016-10, Vol.461 (4), p.3457-3482 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3482 |
---|---|
container_issue | 4 |
container_start_page | 3457 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 461 |
creator | Guo, Quan Gonzalez-Perez, Violeta Guo, Qi Schaller, Matthieu Furlong, Michelle Bower, Richard G. Cole, Shaun Crain, Robert A. Frenk, Carlos S. Helly, John C. Lacey, Cedric G. Lagos, Claudia del P. Mitchell, Peter Schaye, Joop Theuns, Tom |
description | We compare global predictions from the eagle hydrodynamical simulation, and two semi-analytic (SA) models of galaxy formation, l-galaxies and galform. All three models include the key physical processes for the formation and evolution of galaxies and their parameters are calibrated against a small number of observables at z ≈ 0. The two SA models have been applied to merger trees constructed from the eagle dark matter only simulation. We find that at z ≤ 2, both the galaxy stellar mass functions for stellar masses M
* < 1010.5 M⊙ and the median specific star formation rates (sSFRs) in the three models agree to better than 0.4 dex. The evolution of the sSFR predicted by the three models closely follows the mass assembly history of dark matter haloes. In both eagle and l-galaxies there are more central passive galaxies with M
* < 109.5 M⊙ than in galform. This difference is related to galaxies that have entered and then left a larger halo and which are treated as satellites in galform. In the range 0 < z < 1, the slope of the evolution of the star formation rate density in eagle is a factor of ≈1.5 steeper than for the two SA models. The median sizes for galaxies with M
* > 109.5 M⊙ differ in some instances by an order of magnitude, while the stellar mass–size relation in eagle is a factor of ≈2 tighter than for the two SA models. Our results suggest the need for a revision of how SA models treat the effect of baryonic self-gravity on the underlying dark matter. The treatment of gas flows in the models needs to be revised based on detailed comparison with observations to understand in particular the evolution of the stellar mass–metallicity relation. |
doi_str_mv | 10.1093/mnras/stw1525 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845836648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stw1525</oup_id><sourcerecordid>4176869061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-2132d90000943d969d3533a46ebcb673ea8ff9104e9a859362d599cee74a2e663</originalsourceid><addsrcrecordid>eNqN0U1Lw0AQBuBFFKzVo_eAFy-x-53ssdRahYoXPYdpdkO3JLt1N0Hz700_RPCip4HhmWGGF6Frgu8IVmzSuABxEtsPIqg4QSPCpEipkvIUjTBmIs0zQs7RRYwbjDFnVI5QuYAaPq2JiXVJuzbJfLpYzpN1r4PXvYPGllAn0TZdDa31LgGnv-l9F9bQ7DvPnbPlOommsSk4qPt2P9d4bep4ic4qqKO5OtYxenuYv84e0-XL4mk2XaYll6pNKWFUq-EyrDjTSirNBGPApVmVK5kxA3lVKYK5UZALxSTVQqnSmIwDNVKyMbo97N0G_96Z2BaNjaWpa3DGd7EgORc5k5Ln_6A0U4xwIQZ684tufBeGH3eK5FhkGWGDSg-qDD7GYKpiG2wDoS8ILnbpFPt0imM6Pwf4bvsH_QLuTJDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1818057713</pqid></control><display><type>article</type><title>Galaxies in the EAGLE hydrodynamical simulation and in the Durham and Munich semi-analytical models</title><source>Oxford Journals Open Access Collection</source><creator>Guo, Quan ; Gonzalez-Perez, Violeta ; Guo, Qi ; Schaller, Matthieu ; Furlong, Michelle ; Bower, Richard G. ; Cole, Shaun ; Crain, Robert A. ; Frenk, Carlos S. ; Helly, John C. ; Lacey, Cedric G. ; Lagos, Claudia del P. ; Mitchell, Peter ; Schaye, Joop ; Theuns, Tom</creator><creatorcontrib>Guo, Quan ; Gonzalez-Perez, Violeta ; Guo, Qi ; Schaller, Matthieu ; Furlong, Michelle ; Bower, Richard G. ; Cole, Shaun ; Crain, Robert A. ; Frenk, Carlos S. ; Helly, John C. ; Lacey, Cedric G. ; Lagos, Claudia del P. ; Mitchell, Peter ; Schaye, Joop ; Theuns, Tom</creatorcontrib><description>We compare global predictions from the eagle hydrodynamical simulation, and two semi-analytic (SA) models of galaxy formation, l-galaxies and galform. All three models include the key physical processes for the formation and evolution of galaxies and their parameters are calibrated against a small number of observables at z ≈ 0. The two SA models have been applied to merger trees constructed from the eagle dark matter only simulation. We find that at z ≤ 2, both the galaxy stellar mass functions for stellar masses M
* < 1010.5 M⊙ and the median specific star formation rates (sSFRs) in the three models agree to better than 0.4 dex. The evolution of the sSFR predicted by the three models closely follows the mass assembly history of dark matter haloes. In both eagle and l-galaxies there are more central passive galaxies with M
* < 109.5 M⊙ than in galform. This difference is related to galaxies that have entered and then left a larger halo and which are treated as satellites in galform. In the range 0 < z < 1, the slope of the evolution of the star formation rate density in eagle is a factor of ≈1.5 steeper than for the two SA models. The median sizes for galaxies with M
* > 109.5 M⊙ differ in some instances by an order of magnitude, while the stellar mass–size relation in eagle is a factor of ≈2 tighter than for the two SA models. Our results suggest the need for a revision of how SA models treat the effect of baryonic self-gravity on the underlying dark matter. The treatment of gas flows in the models needs to be revised based on detailed comparison with observations to understand in particular the evolution of the stellar mass–metallicity relation.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stw1525</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Astronomical models ; Astronomy ; Comparative analysis ; Computer simulation ; Dark matter ; Fluid mechanics ; Galaxies ; Mathematical models ; Simulation ; Star formation rate ; Stars & galaxies ; Stellar evolution ; Stellar mass</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2016-10, Vol.461 (4), p.3457-3482</ispartof><rights>2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2016</rights><rights>Copyright Oxford University Press, UK Oct 1, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-2132d90000943d969d3533a46ebcb673ea8ff9104e9a859362d599cee74a2e663</citedby><cites>FETCH-LOGICAL-c469t-2132d90000943d969d3533a46ebcb673ea8ff9104e9a859362d599cee74a2e663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stw1525$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Guo, Quan</creatorcontrib><creatorcontrib>Gonzalez-Perez, Violeta</creatorcontrib><creatorcontrib>Guo, Qi</creatorcontrib><creatorcontrib>Schaller, Matthieu</creatorcontrib><creatorcontrib>Furlong, Michelle</creatorcontrib><creatorcontrib>Bower, Richard G.</creatorcontrib><creatorcontrib>Cole, Shaun</creatorcontrib><creatorcontrib>Crain, Robert A.</creatorcontrib><creatorcontrib>Frenk, Carlos S.</creatorcontrib><creatorcontrib>Helly, John C.</creatorcontrib><creatorcontrib>Lacey, Cedric G.</creatorcontrib><creatorcontrib>Lagos, Claudia del P.</creatorcontrib><creatorcontrib>Mitchell, Peter</creatorcontrib><creatorcontrib>Schaye, Joop</creatorcontrib><creatorcontrib>Theuns, Tom</creatorcontrib><title>Galaxies in the EAGLE hydrodynamical simulation and in the Durham and Munich semi-analytical models</title><title>Monthly notices of the Royal Astronomical Society</title><description>We compare global predictions from the eagle hydrodynamical simulation, and two semi-analytic (SA) models of galaxy formation, l-galaxies and galform. All three models include the key physical processes for the formation and evolution of galaxies and their parameters are calibrated against a small number of observables at z ≈ 0. The two SA models have been applied to merger trees constructed from the eagle dark matter only simulation. We find that at z ≤ 2, both the galaxy stellar mass functions for stellar masses M
* < 1010.5 M⊙ and the median specific star formation rates (sSFRs) in the three models agree to better than 0.4 dex. The evolution of the sSFR predicted by the three models closely follows the mass assembly history of dark matter haloes. In both eagle and l-galaxies there are more central passive galaxies with M
* < 109.5 M⊙ than in galform. This difference is related to galaxies that have entered and then left a larger halo and which are treated as satellites in galform. In the range 0 < z < 1, the slope of the evolution of the star formation rate density in eagle is a factor of ≈1.5 steeper than for the two SA models. The median sizes for galaxies with M
* > 109.5 M⊙ differ in some instances by an order of magnitude, while the stellar mass–size relation in eagle is a factor of ≈2 tighter than for the two SA models. Our results suggest the need for a revision of how SA models treat the effect of baryonic self-gravity on the underlying dark matter. The treatment of gas flows in the models needs to be revised based on detailed comparison with observations to understand in particular the evolution of the stellar mass–metallicity relation.</description><subject>Astronomical models</subject><subject>Astronomy</subject><subject>Comparative analysis</subject><subject>Computer simulation</subject><subject>Dark matter</subject><subject>Fluid mechanics</subject><subject>Galaxies</subject><subject>Mathematical models</subject><subject>Simulation</subject><subject>Star formation rate</subject><subject>Stars & galaxies</subject><subject>Stellar evolution</subject><subject>Stellar mass</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0U1Lw0AQBuBFFKzVo_eAFy-x-53ssdRahYoXPYdpdkO3JLt1N0Hz700_RPCip4HhmWGGF6Frgu8IVmzSuABxEtsPIqg4QSPCpEipkvIUjTBmIs0zQs7RRYwbjDFnVI5QuYAaPq2JiXVJuzbJfLpYzpN1r4PXvYPGllAn0TZdDa31LgGnv-l9F9bQ7DvPnbPlOommsSk4qPt2P9d4bep4ic4qqKO5OtYxenuYv84e0-XL4mk2XaYll6pNKWFUq-EyrDjTSirNBGPApVmVK5kxA3lVKYK5UZALxSTVQqnSmIwDNVKyMbo97N0G_96Z2BaNjaWpa3DGd7EgORc5k5Ln_6A0U4xwIQZ684tufBeGH3eK5FhkGWGDSg-qDD7GYKpiG2wDoS8ILnbpFPt0imM6Pwf4bvsH_QLuTJDM</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Guo, Quan</creator><creator>Gonzalez-Perez, Violeta</creator><creator>Guo, Qi</creator><creator>Schaller, Matthieu</creator><creator>Furlong, Michelle</creator><creator>Bower, Richard G.</creator><creator>Cole, Shaun</creator><creator>Crain, Robert A.</creator><creator>Frenk, Carlos S.</creator><creator>Helly, John C.</creator><creator>Lacey, Cedric G.</creator><creator>Lagos, Claudia del P.</creator><creator>Mitchell, Peter</creator><creator>Schaye, Joop</creator><creator>Theuns, Tom</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20161001</creationdate><title>Galaxies in the EAGLE hydrodynamical simulation and in the Durham and Munich semi-analytical models</title><author>Guo, Quan ; Gonzalez-Perez, Violeta ; Guo, Qi ; Schaller, Matthieu ; Furlong, Michelle ; Bower, Richard G. ; Cole, Shaun ; Crain, Robert A. ; Frenk, Carlos S. ; Helly, John C. ; Lacey, Cedric G. ; Lagos, Claudia del P. ; Mitchell, Peter ; Schaye, Joop ; Theuns, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-2132d90000943d969d3533a46ebcb673ea8ff9104e9a859362d599cee74a2e663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Astronomical models</topic><topic>Astronomy</topic><topic>Comparative analysis</topic><topic>Computer simulation</topic><topic>Dark matter</topic><topic>Fluid mechanics</topic><topic>Galaxies</topic><topic>Mathematical models</topic><topic>Simulation</topic><topic>Star formation rate</topic><topic>Stars & galaxies</topic><topic>Stellar evolution</topic><topic>Stellar mass</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Quan</creatorcontrib><creatorcontrib>Gonzalez-Perez, Violeta</creatorcontrib><creatorcontrib>Guo, Qi</creatorcontrib><creatorcontrib>Schaller, Matthieu</creatorcontrib><creatorcontrib>Furlong, Michelle</creatorcontrib><creatorcontrib>Bower, Richard G.</creatorcontrib><creatorcontrib>Cole, Shaun</creatorcontrib><creatorcontrib>Crain, Robert A.</creatorcontrib><creatorcontrib>Frenk, Carlos S.</creatorcontrib><creatorcontrib>Helly, John C.</creatorcontrib><creatorcontrib>Lacey, Cedric G.</creatorcontrib><creatorcontrib>Lagos, Claudia del P.</creatorcontrib><creatorcontrib>Mitchell, Peter</creatorcontrib><creatorcontrib>Schaye, Joop</creatorcontrib><creatorcontrib>Theuns, Tom</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Quan</au><au>Gonzalez-Perez, Violeta</au><au>Guo, Qi</au><au>Schaller, Matthieu</au><au>Furlong, Michelle</au><au>Bower, Richard G.</au><au>Cole, Shaun</au><au>Crain, Robert A.</au><au>Frenk, Carlos S.</au><au>Helly, John C.</au><au>Lacey, Cedric G.</au><au>Lagos, Claudia del P.</au><au>Mitchell, Peter</au><au>Schaye, Joop</au><au>Theuns, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Galaxies in the EAGLE hydrodynamical simulation and in the Durham and Munich semi-analytical models</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2016-10-01</date><risdate>2016</risdate><volume>461</volume><issue>4</issue><spage>3457</spage><epage>3482</epage><pages>3457-3482</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>We compare global predictions from the eagle hydrodynamical simulation, and two semi-analytic (SA) models of galaxy formation, l-galaxies and galform. All three models include the key physical processes for the formation and evolution of galaxies and their parameters are calibrated against a small number of observables at z ≈ 0. The two SA models have been applied to merger trees constructed from the eagle dark matter only simulation. We find that at z ≤ 2, both the galaxy stellar mass functions for stellar masses M
* < 1010.5 M⊙ and the median specific star formation rates (sSFRs) in the three models agree to better than 0.4 dex. The evolution of the sSFR predicted by the three models closely follows the mass assembly history of dark matter haloes. In both eagle and l-galaxies there are more central passive galaxies with M
* < 109.5 M⊙ than in galform. This difference is related to galaxies that have entered and then left a larger halo and which are treated as satellites in galform. In the range 0 < z < 1, the slope of the evolution of the star formation rate density in eagle is a factor of ≈1.5 steeper than for the two SA models. The median sizes for galaxies with M
* > 109.5 M⊙ differ in some instances by an order of magnitude, while the stellar mass–size relation in eagle is a factor of ≈2 tighter than for the two SA models. Our results suggest the need for a revision of how SA models treat the effect of baryonic self-gravity on the underlying dark matter. The treatment of gas flows in the models needs to be revised based on detailed comparison with observations to understand in particular the evolution of the stellar mass–metallicity relation.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stw1525</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2016-10, Vol.461 (4), p.3457-3482 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845836648 |
source | Oxford Journals Open Access Collection |
subjects | Astronomical models Astronomy Comparative analysis Computer simulation Dark matter Fluid mechanics Galaxies Mathematical models Simulation Star formation rate Stars & galaxies Stellar evolution Stellar mass |
title | Galaxies in the EAGLE hydrodynamical simulation and in the Durham and Munich semi-analytical models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Galaxies%20in%20the%20EAGLE%20hydrodynamical%20simulation%20and%20in%20the%20Durham%20and%20Munich%20semi-analytical%20models&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Guo,%20Quan&rft.date=2016-10-01&rft.volume=461&rft.issue=4&rft.spage=3457&rft.epage=3482&rft.pages=3457-3482&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stw1525&rft_dat=%3Cproquest_TOX%3E4176869061%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1818057713&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stw1525&rfr_iscdi=true |