Tackling non-ignorable dropout in the presence of time varying confounding

We explore the sensitivity of time varying confounding adjusted estimates to different dropout mechanisms. We extend the Heckman correction to two time points and explore selection models to investigate situations where the dropout process is driven by unobserved variables and the outcome respective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society Series C: Applied Statistics 2016-11, Vol.65 (5), p.775-795
Hauptverfasser: Doretti, Marco, Geneletti, Sara, Stanghellini, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 795
container_issue 5
container_start_page 775
container_title Journal of the Royal Statistical Society Series C: Applied Statistics
container_volume 65
creator Doretti, Marco
Geneletti, Sara
Stanghellini, Elena
description We explore the sensitivity of time varying confounding adjusted estimates to different dropout mechanisms. We extend the Heckman correction to two time points and explore selection models to investigate situations where the dropout process is driven by unobserved variables and the outcome respectively. The analysis is embedded in a Bayesian framework which provides several advantages. These include fitting a hierarchical structure to processes that repeat over time and avoiding exclusion restrictions in the case of the Heckman correction. We adopt the decision theoretic approach to causal inference which makes explicit the no-regime-dropout dependence assumption. We apply our methods to data from the 'Counterweight programme' pilot: a UK protocol to address obesity in primary care. A simulation study is also implemented.
doi_str_mv 10.1111/rssc.12154
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845834071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44681855</jstor_id><sourcerecordid>44681855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3894-7b2b0f33efc528dc591a772f5600b22c8277f2cbc35bbb0a71ce00676d3ab54d3</originalsourceid><addsrcrecordid>eNp9kMtLJDEQxoMo7Kh72bvQ4EWEHvPspI8y-Jb1reAlJOm09tiTjEn3rvPfb8Z2PXiwLlXw_b6i6gPgF4JjlGovxGjGCCNGV8AI0YLnpeDFKhhBSFheYkZ_gPUYpzAVgnQETm-VeWkb95Q57_LmyfmgdGuzKvi577uscVn3bLN5sNE6YzNfZ10zs9kfFRZLl_Gu9r2r0rwJ1mrVRvvzo2-Au8OD28lxfn5xdDLZP88NESXNucYa1oTY2jAsKsNKpDjHNSsg1BgbgTmvsdGGMK01VBwZC2HBi4oozWhFNsDOsHce_GtvYydnTTS2bZWzvo8SCcoEoZCjhG5_Qae-Dy5dlyjMWclFQRK1O1Am-BiDreU8NLP0oERQLmOVy1jle6wJRgP8t2nt4htSXt_cTP57tgbPNHY-fHooLQQSjCU9H_QmdvbtU1fhRRaccCYffh_JK47E2f3lozwm_wB50pLj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1827597863</pqid></control><display><type>article</type><title>Tackling non-ignorable dropout in the presence of time varying confounding</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Doretti, Marco ; Geneletti, Sara ; Stanghellini, Elena</creator><creatorcontrib>Doretti, Marco ; Geneletti, Sara ; Stanghellini, Elena</creatorcontrib><description>We explore the sensitivity of time varying confounding adjusted estimates to different dropout mechanisms. We extend the Heckman correction to two time points and explore selection models to investigate situations where the dropout process is driven by unobserved variables and the outcome respectively. The analysis is embedded in a Bayesian framework which provides several advantages. These include fitting a hierarchical structure to processes that repeat over time and avoiding exclusion restrictions in the case of the Heckman correction. We adopt the decision theoretic approach to causal inference which makes explicit the no-regime-dropout dependence assumption. We apply our methods to data from the 'Counterweight programme' pilot: a UK protocol to address obesity in primary care. A simulation study is also implemented.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.1111/rssc.12154</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Applied statistics ; Bayesian analysis ; Causal inference ; Dropouts ; Estimates ; Fittings ; Heckman correction ; Non-ignorable dropout ; Obesity ; Pilots ; Selection models ; Simulation ; Statistics ; Structural hierarchy ; Studies ; Time varying confounding</subject><ispartof>Journal of the Royal Statistical Society Series C: Applied Statistics, 2016-11, Vol.65 (5), p.775-795</ispartof><rights>Copyright © 2016 The Royal Statistical Society and John Wiley &amp; Sons Ltd.</rights><rights>2016 Royal Statistical Society</rights><rights>Copyright © 2016 The Royal Statistical Society and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3894-7b2b0f33efc528dc591a772f5600b22c8277f2cbc35bbb0a71ce00676d3ab54d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44681855$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44681855$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,1412,27905,27906,45555,45556,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>Doretti, Marco</creatorcontrib><creatorcontrib>Geneletti, Sara</creatorcontrib><creatorcontrib>Stanghellini, Elena</creatorcontrib><title>Tackling non-ignorable dropout in the presence of time varying confounding</title><title>Journal of the Royal Statistical Society Series C: Applied Statistics</title><addtitle>J. R. Stat. Soc. C</addtitle><description>We explore the sensitivity of time varying confounding adjusted estimates to different dropout mechanisms. We extend the Heckman correction to two time points and explore selection models to investigate situations where the dropout process is driven by unobserved variables and the outcome respectively. The analysis is embedded in a Bayesian framework which provides several advantages. These include fitting a hierarchical structure to processes that repeat over time and avoiding exclusion restrictions in the case of the Heckman correction. We adopt the decision theoretic approach to causal inference which makes explicit the no-regime-dropout dependence assumption. We apply our methods to data from the 'Counterweight programme' pilot: a UK protocol to address obesity in primary care. A simulation study is also implemented.</description><subject>Applied statistics</subject><subject>Bayesian analysis</subject><subject>Causal inference</subject><subject>Dropouts</subject><subject>Estimates</subject><subject>Fittings</subject><subject>Heckman correction</subject><subject>Non-ignorable dropout</subject><subject>Obesity</subject><subject>Pilots</subject><subject>Selection models</subject><subject>Simulation</subject><subject>Statistics</subject><subject>Structural hierarchy</subject><subject>Studies</subject><subject>Time varying confounding</subject><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLJDEQxoMo7Kh72bvQ4EWEHvPspI8y-Jb1reAlJOm09tiTjEn3rvPfb8Z2PXiwLlXw_b6i6gPgF4JjlGovxGjGCCNGV8AI0YLnpeDFKhhBSFheYkZ_gPUYpzAVgnQETm-VeWkb95Q57_LmyfmgdGuzKvi577uscVn3bLN5sNE6YzNfZ10zs9kfFRZLl_Gu9r2r0rwJ1mrVRvvzo2-Au8OD28lxfn5xdDLZP88NESXNucYa1oTY2jAsKsNKpDjHNSsg1BgbgTmvsdGGMK01VBwZC2HBi4oozWhFNsDOsHce_GtvYydnTTS2bZWzvo8SCcoEoZCjhG5_Qae-Dy5dlyjMWclFQRK1O1Am-BiDreU8NLP0oERQLmOVy1jle6wJRgP8t2nt4htSXt_cTP57tgbPNHY-fHooLQQSjCU9H_QmdvbtU1fhRRaccCYffh_JK47E2f3lozwm_wB50pLj</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Doretti, Marco</creator><creator>Geneletti, Sara</creator><creator>Stanghellini, Elena</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201611</creationdate><title>Tackling non-ignorable dropout in the presence of time varying confounding</title><author>Doretti, Marco ; Geneletti, Sara ; Stanghellini, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3894-7b2b0f33efc528dc591a772f5600b22c8277f2cbc35bbb0a71ce00676d3ab54d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied statistics</topic><topic>Bayesian analysis</topic><topic>Causal inference</topic><topic>Dropouts</topic><topic>Estimates</topic><topic>Fittings</topic><topic>Heckman correction</topic><topic>Non-ignorable dropout</topic><topic>Obesity</topic><topic>Pilots</topic><topic>Selection models</topic><topic>Simulation</topic><topic>Statistics</topic><topic>Structural hierarchy</topic><topic>Studies</topic><topic>Time varying confounding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doretti, Marco</creatorcontrib><creatorcontrib>Geneletti, Sara</creatorcontrib><creatorcontrib>Stanghellini, Elena</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society Series C: Applied Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doretti, Marco</au><au>Geneletti, Sara</au><au>Stanghellini, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tackling non-ignorable dropout in the presence of time varying confounding</atitle><jtitle>Journal of the Royal Statistical Society Series C: Applied Statistics</jtitle><addtitle>J. R. Stat. Soc. C</addtitle><date>2016-11</date><risdate>2016</risdate><volume>65</volume><issue>5</issue><spage>775</spage><epage>795</epage><pages>775-795</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><abstract>We explore the sensitivity of time varying confounding adjusted estimates to different dropout mechanisms. We extend the Heckman correction to two time points and explore selection models to investigate situations where the dropout process is driven by unobserved variables and the outcome respectively. The analysis is embedded in a Bayesian framework which provides several advantages. These include fitting a hierarchical structure to processes that repeat over time and avoiding exclusion restrictions in the case of the Heckman correction. We adopt the decision theoretic approach to causal inference which makes explicit the no-regime-dropout dependence assumption. We apply our methods to data from the 'Counterweight programme' pilot: a UK protocol to address obesity in primary care. A simulation study is also implemented.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/rssc.12154</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-9254
ispartof Journal of the Royal Statistical Society Series C: Applied Statistics, 2016-11, Vol.65 (5), p.775-795
issn 0035-9254
1467-9876
language eng
recordid cdi_proquest_miscellaneous_1845834071
source Wiley Online Library Journals Frontfile Complete; Business Source Complete; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current)
subjects Applied statistics
Bayesian analysis
Causal inference
Dropouts
Estimates
Fittings
Heckman correction
Non-ignorable dropout
Obesity
Pilots
Selection models
Simulation
Statistics
Structural hierarchy
Studies
Time varying confounding
title Tackling non-ignorable dropout in the presence of time varying confounding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tackling%20non-ignorable%20dropout%20in%20the%20presence%20of%20time%20varying%20confounding&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society%20Series%20C:%20Applied%20Statistics&rft.au=Doretti,%20Marco&rft.date=2016-11&rft.volume=65&rft.issue=5&rft.spage=775&rft.epage=795&rft.pages=775-795&rft.issn=0035-9254&rft.eissn=1467-9876&rft_id=info:doi/10.1111/rssc.12154&rft_dat=%3Cjstor_proqu%3E44681855%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1827597863&rft_id=info:pmid/&rft_jstor_id=44681855&rfr_iscdi=true