Strength and Dilatancy Behaviors of Dense Modeled Rockfill Material in General Stress Space

AbstractThe strength and dilatancy behaviors of modeled dense rockfill material were systematically investigated through a series of true triaxial compression tests at different minor principal stress and intermediate principal stress ratios. It was found that the intermediate principal stress ratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of geomechanics 2016-10, Vol.16 (5)
Hauptverfasser: Xiao, Yang, Liu, Hanlong, Liu, Hong, Chen, Yumin, Zhang, Wengang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title International journal of geomechanics
container_volume 16
creator Xiao, Yang
Liu, Hanlong
Liu, Hong
Chen, Yumin
Zhang, Wengang
description AbstractThe strength and dilatancy behaviors of modeled dense rockfill material were systematically investigated through a series of true triaxial compression tests at different minor principal stress and intermediate principal stress ratios. It was found that the intermediate principal stress ratio had great influence on the critical-state friction angle, peak-state friction angle, and maximum dilatancy of the modeled rockfill material. Both the critical-state and peak-state friction angles at a given confining pressure first increased and then decreased with an increase in the intermediate principal stress ratio. An increase in the minor principal stress led to a decrease in both the critical-state and peak-state friction angles at a given intermediate principal stress ratio. The maximum dilatancy decreased with an increase in the minor principal stress or the intermediate principal stress ratio. It was also found that the intermediate principal stress ratio significantly affected the relationship between the peak-state friction angle and maximum dilatancy. An adapted stress–dilatancy equation (incorporating a state index and a function of the intermediate principal stress ratio) could be used to capture the stress–dilatancy behaviors of modeled rockfill materials at different intermediate principal stress ratios.
doi_str_mv 10.1061/(ASCE)GM.1943-5622.0000645
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845832789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1827890213</sourcerecordid><originalsourceid>FETCH-LOGICAL-a375t-e81ccc2f68b8134a8b43f7411b7defbf735068bd2fe32361aaa0911f2d3d1cb33</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhCMEEqXwDhanckjx2vnlVtoSkIiQKJw4WI6zpimpU-wUqW9Pola9IbGXHe3OzOHzvGugY6AR3I4mi-n8JsvHkAbcDyPGxrSbKAhPvMHxdtrpkDOfRwGcexfOrSiFOAjTgfexaC2az3ZJpCnJrKplK43akXtcyp-qsY40mszQOCR5U2KNJXlt1Jeu6prkskVbyZpUhmRo0Hayr3OOLDZS4aV3pmXt8Oqwh977w_xt-ug_v2RP08mzL3kctj4moJRiOkqKBHggkyLgOg4AirhEXeiYh7T7lUwjZzwCKSVNATQreQmq4Hzojfa9G9t8b9G1Yl05hXUtDTZbJyAJwoSzOEn_Ye1tlEHfere3Kts4Z1GLja3W0u4EUNHDF6KHL7Jc9KBFD1oc4HfhaB-WXbtYNVtrOgLH5N_BX34WiG4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1827890213</pqid></control><display><type>article</type><title>Strength and Dilatancy Behaviors of Dense Modeled Rockfill Material in General Stress Space</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Xiao, Yang ; Liu, Hanlong ; Liu, Hong ; Chen, Yumin ; Zhang, Wengang</creator><creatorcontrib>Xiao, Yang ; Liu, Hanlong ; Liu, Hong ; Chen, Yumin ; Zhang, Wengang</creatorcontrib><description>AbstractThe strength and dilatancy behaviors of modeled dense rockfill material were systematically investigated through a series of true triaxial compression tests at different minor principal stress and intermediate principal stress ratios. It was found that the intermediate principal stress ratio had great influence on the critical-state friction angle, peak-state friction angle, and maximum dilatancy of the modeled rockfill material. Both the critical-state and peak-state friction angles at a given confining pressure first increased and then decreased with an increase in the intermediate principal stress ratio. An increase in the minor principal stress led to a decrease in both the critical-state and peak-state friction angles at a given intermediate principal stress ratio. The maximum dilatancy decreased with an increase in the minor principal stress or the intermediate principal stress ratio. It was also found that the intermediate principal stress ratio significantly affected the relationship between the peak-state friction angle and maximum dilatancy. An adapted stress–dilatancy equation (incorporating a state index and a function of the intermediate principal stress ratio) could be used to capture the stress–dilatancy behaviors of modeled rockfill materials at different intermediate principal stress ratios.</description><identifier>ISSN: 1532-3641</identifier><identifier>EISSN: 1943-5622</identifier><identifier>DOI: 10.1061/(ASCE)GM.1943-5622.0000645</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>Confining ; Friction ; Mathematical analysis ; Mathematical models ; Rockfill ; Strength ; Stress ratio ; Stresses ; Technical Papers</subject><ispartof>International journal of geomechanics, 2016-10, Vol.16 (5)</ispartof><rights>2016 American Society of Civil Engineers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a375t-e81ccc2f68b8134a8b43f7411b7defbf735068bd2fe32361aaa0911f2d3d1cb33</citedby><cites>FETCH-LOGICAL-a375t-e81ccc2f68b8134a8b43f7411b7defbf735068bd2fe32361aaa0911f2d3d1cb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)GM.1943-5622.0000645$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)GM.1943-5622.0000645$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,75963,75971</link.rule.ids></links><search><creatorcontrib>Xiao, Yang</creatorcontrib><creatorcontrib>Liu, Hanlong</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Chen, Yumin</creatorcontrib><creatorcontrib>Zhang, Wengang</creatorcontrib><title>Strength and Dilatancy Behaviors of Dense Modeled Rockfill Material in General Stress Space</title><title>International journal of geomechanics</title><description>AbstractThe strength and dilatancy behaviors of modeled dense rockfill material were systematically investigated through a series of true triaxial compression tests at different minor principal stress and intermediate principal stress ratios. It was found that the intermediate principal stress ratio had great influence on the critical-state friction angle, peak-state friction angle, and maximum dilatancy of the modeled rockfill material. Both the critical-state and peak-state friction angles at a given confining pressure first increased and then decreased with an increase in the intermediate principal stress ratio. An increase in the minor principal stress led to a decrease in both the critical-state and peak-state friction angles at a given intermediate principal stress ratio. The maximum dilatancy decreased with an increase in the minor principal stress or the intermediate principal stress ratio. It was also found that the intermediate principal stress ratio significantly affected the relationship between the peak-state friction angle and maximum dilatancy. An adapted stress–dilatancy equation (incorporating a state index and a function of the intermediate principal stress ratio) could be used to capture the stress–dilatancy behaviors of modeled rockfill materials at different intermediate principal stress ratios.</description><subject>Confining</subject><subject>Friction</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Rockfill</subject><subject>Strength</subject><subject>Stress ratio</subject><subject>Stresses</subject><subject>Technical Papers</subject><issn>1532-3641</issn><issn>1943-5622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkM1OwzAQhCMEEqXwDhanckjx2vnlVtoSkIiQKJw4WI6zpimpU-wUqW9Pola9IbGXHe3OzOHzvGugY6AR3I4mi-n8JsvHkAbcDyPGxrSbKAhPvMHxdtrpkDOfRwGcexfOrSiFOAjTgfexaC2az3ZJpCnJrKplK43akXtcyp-qsY40mszQOCR5U2KNJXlt1Jeu6prkskVbyZpUhmRo0Hayr3OOLDZS4aV3pmXt8Oqwh977w_xt-ug_v2RP08mzL3kctj4moJRiOkqKBHggkyLgOg4AirhEXeiYh7T7lUwjZzwCKSVNATQreQmq4Hzojfa9G9t8b9G1Yl05hXUtDTZbJyAJwoSzOEn_Ye1tlEHfere3Kts4Z1GLja3W0u4EUNHDF6KHL7Jc9KBFD1oc4HfhaB-WXbtYNVtrOgLH5N_BX34WiG4</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Xiao, Yang</creator><creator>Liu, Hanlong</creator><creator>Liu, Hong</creator><creator>Chen, Yumin</creator><creator>Zhang, Wengang</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20161001</creationdate><title>Strength and Dilatancy Behaviors of Dense Modeled Rockfill Material in General Stress Space</title><author>Xiao, Yang ; Liu, Hanlong ; Liu, Hong ; Chen, Yumin ; Zhang, Wengang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a375t-e81ccc2f68b8134a8b43f7411b7defbf735068bd2fe32361aaa0911f2d3d1cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Confining</topic><topic>Friction</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Rockfill</topic><topic>Strength</topic><topic>Stress ratio</topic><topic>Stresses</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Yang</creatorcontrib><creatorcontrib>Liu, Hanlong</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Chen, Yumin</creatorcontrib><creatorcontrib>Zhang, Wengang</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Yang</au><au>Liu, Hanlong</au><au>Liu, Hong</au><au>Chen, Yumin</au><au>Zhang, Wengang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strength and Dilatancy Behaviors of Dense Modeled Rockfill Material in General Stress Space</atitle><jtitle>International journal of geomechanics</jtitle><date>2016-10-01</date><risdate>2016</risdate><volume>16</volume><issue>5</issue><issn>1532-3641</issn><eissn>1943-5622</eissn><abstract>AbstractThe strength and dilatancy behaviors of modeled dense rockfill material were systematically investigated through a series of true triaxial compression tests at different minor principal stress and intermediate principal stress ratios. It was found that the intermediate principal stress ratio had great influence on the critical-state friction angle, peak-state friction angle, and maximum dilatancy of the modeled rockfill material. Both the critical-state and peak-state friction angles at a given confining pressure first increased and then decreased with an increase in the intermediate principal stress ratio. An increase in the minor principal stress led to a decrease in both the critical-state and peak-state friction angles at a given intermediate principal stress ratio. The maximum dilatancy decreased with an increase in the minor principal stress or the intermediate principal stress ratio. It was also found that the intermediate principal stress ratio significantly affected the relationship between the peak-state friction angle and maximum dilatancy. An adapted stress–dilatancy equation (incorporating a state index and a function of the intermediate principal stress ratio) could be used to capture the stress–dilatancy behaviors of modeled rockfill materials at different intermediate principal stress ratios.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)GM.1943-5622.0000645</doi></addata></record>
fulltext fulltext
identifier ISSN: 1532-3641
ispartof International journal of geomechanics, 2016-10, Vol.16 (5)
issn 1532-3641
1943-5622
language eng
recordid cdi_proquest_miscellaneous_1845832789
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Confining
Friction
Mathematical analysis
Mathematical models
Rockfill
Strength
Stress ratio
Stresses
Technical Papers
title Strength and Dilatancy Behaviors of Dense Modeled Rockfill Material in General Stress Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strength%20and%20Dilatancy%20Behaviors%20of%20Dense%20Modeled%20Rockfill%20Material%20in%20General%20Stress%20Space&rft.jtitle=International%20journal%20of%20geomechanics&rft.au=Xiao,%20Yang&rft.date=2016-10-01&rft.volume=16&rft.issue=5&rft.issn=1532-3641&rft.eissn=1943-5622&rft_id=info:doi/10.1061/(ASCE)GM.1943-5622.0000645&rft_dat=%3Cproquest_cross%3E1827890213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1827890213&rft_id=info:pmid/&rfr_iscdi=true