Grafting PNIPAAm from β-barrel shaped transmembrane nanopores

Abstract The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2016-11, Vol.107, p.115-123
Hauptverfasser: Charan, Himanshu, Kinzel, Julia, Glebe, Ulrich, Anand, Deepak, Garakani, Tayebeh Mirzaei, Zhu, Leilei, Bocola, Marco, Schwaneberg, Ulrich, Böker, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123
container_issue
container_start_page 115
container_title Biomaterials
container_volume 107
creator Charan, Himanshu
Kinzel, Julia
Glebe, Ulrich
Anand, Deepak
Garakani, Tayebeh Mirzaei
Zhu, Leilei
Bocola, Marco
Schwaneberg, Ulrich
Böker, Alexander
description Abstract The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established the conjugate formation with a class of transmembrane proteins and grow polymer chains from the ferric hydroxamate uptake protein component A (FhuA; a β-barrel transmembrane protein of Escherichia coli ). As the lysine residues of naturally occurring FhuA are distributed over the whole protein, FhuA was reengineered to have up to 11 lysines, distributed symmetrically in a rim on the membrane exposed side (outside) of the protein channel and exclusively above the hydrophobic region. Reengineering of FhuA ensures a polymer growth only on the outside of the β-barrel and prevents blockage of the channel as a result of the polymerization. A water-soluble initiator for controlled radical polymerization (CRP) was consecutively linked to the lysine residues of FhuA and N -isopropylacrylamide (NIPAAm) polymerized under copper-mediated CRP conditions. The conjugate formation was analyzed by using MALDI-ToF mass spectrometry, SDS-PAGE, circular dichroism spectroscopy, analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy and size exclusion chromatography. Such conjugates combine the specific functions of the transmembrane proteins, like maintaining membrane potential gradients or translocation of substrates with the unique properties of synthetic polymers such as temperature and pH stimuli handles. FhuA-PNIPAAm conjugates will serve as functional nanosized building blocks for applications in targeted drug delivery, self-assembly systems, functional membranes and transmembrane protein gated nanoreactors.
doi_str_mv 10.1016/j.biomaterials.2016.08.033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845832404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961216304288</els_id><sourcerecordid>1827902445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-c6b01dd073214f0873d74ea3263b78bc980ed8c45020c8c127c0192b13bb19133</originalsourceid><addsrcrecordid>eNqNks9u1DAQxi1ERZfCK6CIE5ekM7aTOBwqrVpoK1WlEnC2bGcCXvJnsbNIfS0ehGfC0Zaq4rSnka3fzHz29zH2FqFAwOp0U1g_DWam4E0fC57uClAFCPGMrVDVKi8bKJ-zFaDkeVMhP2YvY9xAOoPkL9gxryuUWIkVO7sMppv9-C27u72-W6-HrAvTkP35nVsTAvVZ_G621GZzMGMcaLCpUjaacdpOgeIrdtQlDfT6oZ6wrx8_fDm_ym8-XV6fr29yVwLOuassYNtCLTjKDlQt2lqSEbwStlbWNQqoVU6WwMEph7x2gA23KKzFBoU4Ye_2c7dh-rmjOOvBR0d9n9RMu6hRyVIJnp53AMrrBriU5SEol1XZNAv6fo-6MMUYqNPb4AcT7jWCXlzRG_3UFb24okHp5EpqfvOwZ2cHah9b_9mQgIs9QOkPf3kKOjpPo6PWB3Kzbid_2J6z_8a43o_emf4H3VPcTLswLj2oI9egPy_5WOKRJKRcKCX-AhQtt54</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822465995</pqid></control><display><type>article</type><title>Grafting PNIPAAm from β-barrel shaped transmembrane nanopores</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Charan, Himanshu ; Kinzel, Julia ; Glebe, Ulrich ; Anand, Deepak ; Garakani, Tayebeh Mirzaei ; Zhu, Leilei ; Bocola, Marco ; Schwaneberg, Ulrich ; Böker, Alexander</creator><creatorcontrib>Charan, Himanshu ; Kinzel, Julia ; Glebe, Ulrich ; Anand, Deepak ; Garakani, Tayebeh Mirzaei ; Zhu, Leilei ; Bocola, Marco ; Schwaneberg, Ulrich ; Böker, Alexander</creatorcontrib><description>Abstract The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established the conjugate formation with a class of transmembrane proteins and grow polymer chains from the ferric hydroxamate uptake protein component A (FhuA; a β-barrel transmembrane protein of Escherichia coli ). As the lysine residues of naturally occurring FhuA are distributed over the whole protein, FhuA was reengineered to have up to 11 lysines, distributed symmetrically in a rim on the membrane exposed side (outside) of the protein channel and exclusively above the hydrophobic region. Reengineering of FhuA ensures a polymer growth only on the outside of the β-barrel and prevents blockage of the channel as a result of the polymerization. A water-soluble initiator for controlled radical polymerization (CRP) was consecutively linked to the lysine residues of FhuA and N -isopropylacrylamide (NIPAAm) polymerized under copper-mediated CRP conditions. The conjugate formation was analyzed by using MALDI-ToF mass spectrometry, SDS-PAGE, circular dichroism spectroscopy, analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy and size exclusion chromatography. Such conjugates combine the specific functions of the transmembrane proteins, like maintaining membrane potential gradients or translocation of substrates with the unique properties of synthetic polymers such as temperature and pH stimuli handles. FhuA-PNIPAAm conjugates will serve as functional nanosized building blocks for applications in targeted drug delivery, self-assembly systems, functional membranes and transmembrane protein gated nanoreactors.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2016.08.033</identifier><identifier>PMID: 27614163</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Acrylic Resins - chemistry ; Advanced Basic Science ; Bacterial Outer Membrane Proteins - chemistry ; Bacterial Outer Membrane Proteins - genetics ; Bacterial Outer Membrane Proteins - ultrastructure ; BBTP ; Channels ; Conjugates ; Dentistry ; Escherichia coli ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - ultrastructure ; FhuA ; Grafting-from polymerization ; Lipid Bilayers - chemistry ; Lysine ; Membranes ; Molecular Conformation ; Nanopores - ultrastructure ; NIPAAm ; Polymerization ; Protein Engineering - methods ; Protein-polymer conjugate ; Proteins ; Reengineering ; Self assembly ; Structure-Activity Relationship ; Transmembrane protein</subject><ispartof>Biomaterials, 2016-11, Vol.107, p.115-123</ispartof><rights>Elsevier Ltd</rights><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-c6b01dd073214f0873d74ea3263b78bc980ed8c45020c8c127c0192b13bb19133</citedby><cites>FETCH-LOGICAL-c501t-c6b01dd073214f0873d74ea3263b78bc980ed8c45020c8c127c0192b13bb19133</cites><orcidid>0000-0002-6402-8008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961216304288$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27614163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Charan, Himanshu</creatorcontrib><creatorcontrib>Kinzel, Julia</creatorcontrib><creatorcontrib>Glebe, Ulrich</creatorcontrib><creatorcontrib>Anand, Deepak</creatorcontrib><creatorcontrib>Garakani, Tayebeh Mirzaei</creatorcontrib><creatorcontrib>Zhu, Leilei</creatorcontrib><creatorcontrib>Bocola, Marco</creatorcontrib><creatorcontrib>Schwaneberg, Ulrich</creatorcontrib><creatorcontrib>Böker, Alexander</creatorcontrib><title>Grafting PNIPAAm from β-barrel shaped transmembrane nanopores</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established the conjugate formation with a class of transmembrane proteins and grow polymer chains from the ferric hydroxamate uptake protein component A (FhuA; a β-barrel transmembrane protein of Escherichia coli ). As the lysine residues of naturally occurring FhuA are distributed over the whole protein, FhuA was reengineered to have up to 11 lysines, distributed symmetrically in a rim on the membrane exposed side (outside) of the protein channel and exclusively above the hydrophobic region. Reengineering of FhuA ensures a polymer growth only on the outside of the β-barrel and prevents blockage of the channel as a result of the polymerization. A water-soluble initiator for controlled radical polymerization (CRP) was consecutively linked to the lysine residues of FhuA and N -isopropylacrylamide (NIPAAm) polymerized under copper-mediated CRP conditions. The conjugate formation was analyzed by using MALDI-ToF mass spectrometry, SDS-PAGE, circular dichroism spectroscopy, analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy and size exclusion chromatography. Such conjugates combine the specific functions of the transmembrane proteins, like maintaining membrane potential gradients or translocation of substrates with the unique properties of synthetic polymers such as temperature and pH stimuli handles. FhuA-PNIPAAm conjugates will serve as functional nanosized building blocks for applications in targeted drug delivery, self-assembly systems, functional membranes and transmembrane protein gated nanoreactors.</description><subject>Acrylic Resins - chemistry</subject><subject>Advanced Basic Science</subject><subject>Bacterial Outer Membrane Proteins - chemistry</subject><subject>Bacterial Outer Membrane Proteins - genetics</subject><subject>Bacterial Outer Membrane Proteins - ultrastructure</subject><subject>BBTP</subject><subject>Channels</subject><subject>Conjugates</subject><subject>Dentistry</subject><subject>Escherichia coli</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - ultrastructure</subject><subject>FhuA</subject><subject>Grafting-from polymerization</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lysine</subject><subject>Membranes</subject><subject>Molecular Conformation</subject><subject>Nanopores - ultrastructure</subject><subject>NIPAAm</subject><subject>Polymerization</subject><subject>Protein Engineering - methods</subject><subject>Protein-polymer conjugate</subject><subject>Proteins</subject><subject>Reengineering</subject><subject>Self assembly</subject><subject>Structure-Activity Relationship</subject><subject>Transmembrane protein</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9u1DAQxi1ERZfCK6CIE5ekM7aTOBwqrVpoK1WlEnC2bGcCXvJnsbNIfS0ehGfC0Zaq4rSnka3fzHz29zH2FqFAwOp0U1g_DWam4E0fC57uClAFCPGMrVDVKi8bKJ-zFaDkeVMhP2YvY9xAOoPkL9gxryuUWIkVO7sMppv9-C27u72-W6-HrAvTkP35nVsTAvVZ_G621GZzMGMcaLCpUjaacdpOgeIrdtQlDfT6oZ6wrx8_fDm_ym8-XV6fr29yVwLOuassYNtCLTjKDlQt2lqSEbwStlbWNQqoVU6WwMEph7x2gA23KKzFBoU4Ye_2c7dh-rmjOOvBR0d9n9RMu6hRyVIJnp53AMrrBriU5SEol1XZNAv6fo-6MMUYqNPb4AcT7jWCXlzRG_3UFb24okHp5EpqfvOwZ2cHah9b_9mQgIs9QOkPf3kKOjpPo6PWB3Kzbid_2J6z_8a43o_emf4H3VPcTLswLj2oI9egPy_5WOKRJKRcKCX-AhQtt54</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Charan, Himanshu</creator><creator>Kinzel, Julia</creator><creator>Glebe, Ulrich</creator><creator>Anand, Deepak</creator><creator>Garakani, Tayebeh Mirzaei</creator><creator>Zhu, Leilei</creator><creator>Bocola, Marco</creator><creator>Schwaneberg, Ulrich</creator><creator>Böker, Alexander</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6402-8008</orcidid></search><sort><creationdate>20161101</creationdate><title>Grafting PNIPAAm from β-barrel shaped transmembrane nanopores</title><author>Charan, Himanshu ; Kinzel, Julia ; Glebe, Ulrich ; Anand, Deepak ; Garakani, Tayebeh Mirzaei ; Zhu, Leilei ; Bocola, Marco ; Schwaneberg, Ulrich ; Böker, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-c6b01dd073214f0873d74ea3263b78bc980ed8c45020c8c127c0192b13bb19133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acrylic Resins - chemistry</topic><topic>Advanced Basic Science</topic><topic>Bacterial Outer Membrane Proteins - chemistry</topic><topic>Bacterial Outer Membrane Proteins - genetics</topic><topic>Bacterial Outer Membrane Proteins - ultrastructure</topic><topic>BBTP</topic><topic>Channels</topic><topic>Conjugates</topic><topic>Dentistry</topic><topic>Escherichia coli</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - ultrastructure</topic><topic>FhuA</topic><topic>Grafting-from polymerization</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lysine</topic><topic>Membranes</topic><topic>Molecular Conformation</topic><topic>Nanopores - ultrastructure</topic><topic>NIPAAm</topic><topic>Polymerization</topic><topic>Protein Engineering - methods</topic><topic>Protein-polymer conjugate</topic><topic>Proteins</topic><topic>Reengineering</topic><topic>Self assembly</topic><topic>Structure-Activity Relationship</topic><topic>Transmembrane protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charan, Himanshu</creatorcontrib><creatorcontrib>Kinzel, Julia</creatorcontrib><creatorcontrib>Glebe, Ulrich</creatorcontrib><creatorcontrib>Anand, Deepak</creatorcontrib><creatorcontrib>Garakani, Tayebeh Mirzaei</creatorcontrib><creatorcontrib>Zhu, Leilei</creatorcontrib><creatorcontrib>Bocola, Marco</creatorcontrib><creatorcontrib>Schwaneberg, Ulrich</creatorcontrib><creatorcontrib>Böker, Alexander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charan, Himanshu</au><au>Kinzel, Julia</au><au>Glebe, Ulrich</au><au>Anand, Deepak</au><au>Garakani, Tayebeh Mirzaei</au><au>Zhu, Leilei</au><au>Bocola, Marco</au><au>Schwaneberg, Ulrich</au><au>Böker, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grafting PNIPAAm from β-barrel shaped transmembrane nanopores</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>107</volume><spage>115</spage><epage>123</epage><pages>115-123</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established the conjugate formation with a class of transmembrane proteins and grow polymer chains from the ferric hydroxamate uptake protein component A (FhuA; a β-barrel transmembrane protein of Escherichia coli ). As the lysine residues of naturally occurring FhuA are distributed over the whole protein, FhuA was reengineered to have up to 11 lysines, distributed symmetrically in a rim on the membrane exposed side (outside) of the protein channel and exclusively above the hydrophobic region. Reengineering of FhuA ensures a polymer growth only on the outside of the β-barrel and prevents blockage of the channel as a result of the polymerization. A water-soluble initiator for controlled radical polymerization (CRP) was consecutively linked to the lysine residues of FhuA and N -isopropylacrylamide (NIPAAm) polymerized under copper-mediated CRP conditions. The conjugate formation was analyzed by using MALDI-ToF mass spectrometry, SDS-PAGE, circular dichroism spectroscopy, analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy and size exclusion chromatography. Such conjugates combine the specific functions of the transmembrane proteins, like maintaining membrane potential gradients or translocation of substrates with the unique properties of synthetic polymers such as temperature and pH stimuli handles. FhuA-PNIPAAm conjugates will serve as functional nanosized building blocks for applications in targeted drug delivery, self-assembly systems, functional membranes and transmembrane protein gated nanoreactors.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>27614163</pmid><doi>10.1016/j.biomaterials.2016.08.033</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6402-8008</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2016-11, Vol.107, p.115-123
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_1845832404
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Acrylic Resins - chemistry
Advanced Basic Science
Bacterial Outer Membrane Proteins - chemistry
Bacterial Outer Membrane Proteins - genetics
Bacterial Outer Membrane Proteins - ultrastructure
BBTP
Channels
Conjugates
Dentistry
Escherichia coli
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - ultrastructure
FhuA
Grafting-from polymerization
Lipid Bilayers - chemistry
Lysine
Membranes
Molecular Conformation
Nanopores - ultrastructure
NIPAAm
Polymerization
Protein Engineering - methods
Protein-polymer conjugate
Proteins
Reengineering
Self assembly
Structure-Activity Relationship
Transmembrane protein
title Grafting PNIPAAm from β-barrel shaped transmembrane nanopores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T21%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grafting%20PNIPAAm%20from%20%CE%B2-barrel%20shaped%20transmembrane%20nanopores&rft.jtitle=Biomaterials&rft.au=Charan,%20Himanshu&rft.date=2016-11-01&rft.volume=107&rft.spage=115&rft.epage=123&rft.pages=115-123&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2016.08.033&rft_dat=%3Cproquest_cross%3E1827902445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1822465995&rft_id=info:pmid/27614163&rft_els_id=S0142961216304288&rfr_iscdi=true