Grafting PNIPAAm from β-barrel shaped transmembrane nanopores
Abstract The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2016-11, Vol.107, p.115-123 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 123 |
---|---|
container_issue | |
container_start_page | 115 |
container_title | Biomaterials |
container_volume | 107 |
creator | Charan, Himanshu Kinzel, Julia Glebe, Ulrich Anand, Deepak Garakani, Tayebeh Mirzaei Zhu, Leilei Bocola, Marco Schwaneberg, Ulrich Böker, Alexander |
description | Abstract The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established the conjugate formation with a class of transmembrane proteins and grow polymer chains from the ferric hydroxamate uptake protein component A (FhuA; a β-barrel transmembrane protein of Escherichia coli ). As the lysine residues of naturally occurring FhuA are distributed over the whole protein, FhuA was reengineered to have up to 11 lysines, distributed symmetrically in a rim on the membrane exposed side (outside) of the protein channel and exclusively above the hydrophobic region. Reengineering of FhuA ensures a polymer growth only on the outside of the β-barrel and prevents blockage of the channel as a result of the polymerization. A water-soluble initiator for controlled radical polymerization (CRP) was consecutively linked to the lysine residues of FhuA and N -isopropylacrylamide (NIPAAm) polymerized under copper-mediated CRP conditions. The conjugate formation was analyzed by using MALDI-ToF mass spectrometry, SDS-PAGE, circular dichroism spectroscopy, analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy and size exclusion chromatography. Such conjugates combine the specific functions of the transmembrane proteins, like maintaining membrane potential gradients or translocation of substrates with the unique properties of synthetic polymers such as temperature and pH stimuli handles. FhuA-PNIPAAm conjugates will serve as functional nanosized building blocks for applications in targeted drug delivery, self-assembly systems, functional membranes and transmembrane protein gated nanoreactors. |
doi_str_mv | 10.1016/j.biomaterials.2016.08.033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845832404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961216304288</els_id><sourcerecordid>1827902445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-c6b01dd073214f0873d74ea3263b78bc980ed8c45020c8c127c0192b13bb19133</originalsourceid><addsrcrecordid>eNqNks9u1DAQxi1ERZfCK6CIE5ekM7aTOBwqrVpoK1WlEnC2bGcCXvJnsbNIfS0ehGfC0Zaq4rSnka3fzHz29zH2FqFAwOp0U1g_DWam4E0fC57uClAFCPGMrVDVKi8bKJ-zFaDkeVMhP2YvY9xAOoPkL9gxryuUWIkVO7sMppv9-C27u72-W6-HrAvTkP35nVsTAvVZ_G621GZzMGMcaLCpUjaacdpOgeIrdtQlDfT6oZ6wrx8_fDm_ym8-XV6fr29yVwLOuassYNtCLTjKDlQt2lqSEbwStlbWNQqoVU6WwMEph7x2gA23KKzFBoU4Ye_2c7dh-rmjOOvBR0d9n9RMu6hRyVIJnp53AMrrBriU5SEol1XZNAv6fo-6MMUYqNPb4AcT7jWCXlzRG_3UFb24okHp5EpqfvOwZ2cHah9b_9mQgIs9QOkPf3kKOjpPo6PWB3Kzbid_2J6z_8a43o_emf4H3VPcTLswLj2oI9egPy_5WOKRJKRcKCX-AhQtt54</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822465995</pqid></control><display><type>article</type><title>Grafting PNIPAAm from β-barrel shaped transmembrane nanopores</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Charan, Himanshu ; Kinzel, Julia ; Glebe, Ulrich ; Anand, Deepak ; Garakani, Tayebeh Mirzaei ; Zhu, Leilei ; Bocola, Marco ; Schwaneberg, Ulrich ; Böker, Alexander</creator><creatorcontrib>Charan, Himanshu ; Kinzel, Julia ; Glebe, Ulrich ; Anand, Deepak ; Garakani, Tayebeh Mirzaei ; Zhu, Leilei ; Bocola, Marco ; Schwaneberg, Ulrich ; Böker, Alexander</creatorcontrib><description>Abstract The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established the conjugate formation with a class of transmembrane proteins and grow polymer chains from the ferric hydroxamate uptake protein component A (FhuA; a β-barrel transmembrane protein of Escherichia coli ). As the lysine residues of naturally occurring FhuA are distributed over the whole protein, FhuA was reengineered to have up to 11 lysines, distributed symmetrically in a rim on the membrane exposed side (outside) of the protein channel and exclusively above the hydrophobic region. Reengineering of FhuA ensures a polymer growth only on the outside of the β-barrel and prevents blockage of the channel as a result of the polymerization. A water-soluble initiator for controlled radical polymerization (CRP) was consecutively linked to the lysine residues of FhuA and N -isopropylacrylamide (NIPAAm) polymerized under copper-mediated CRP conditions. The conjugate formation was analyzed by using MALDI-ToF mass spectrometry, SDS-PAGE, circular dichroism spectroscopy, analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy and size exclusion chromatography. Such conjugates combine the specific functions of the transmembrane proteins, like maintaining membrane potential gradients or translocation of substrates with the unique properties of synthetic polymers such as temperature and pH stimuli handles. FhuA-PNIPAAm conjugates will serve as functional nanosized building blocks for applications in targeted drug delivery, self-assembly systems, functional membranes and transmembrane protein gated nanoreactors.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2016.08.033</identifier><identifier>PMID: 27614163</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Acrylic Resins - chemistry ; Advanced Basic Science ; Bacterial Outer Membrane Proteins - chemistry ; Bacterial Outer Membrane Proteins - genetics ; Bacterial Outer Membrane Proteins - ultrastructure ; BBTP ; Channels ; Conjugates ; Dentistry ; Escherichia coli ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - ultrastructure ; FhuA ; Grafting-from polymerization ; Lipid Bilayers - chemistry ; Lysine ; Membranes ; Molecular Conformation ; Nanopores - ultrastructure ; NIPAAm ; Polymerization ; Protein Engineering - methods ; Protein-polymer conjugate ; Proteins ; Reengineering ; Self assembly ; Structure-Activity Relationship ; Transmembrane protein</subject><ispartof>Biomaterials, 2016-11, Vol.107, p.115-123</ispartof><rights>Elsevier Ltd</rights><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-c6b01dd073214f0873d74ea3263b78bc980ed8c45020c8c127c0192b13bb19133</citedby><cites>FETCH-LOGICAL-c501t-c6b01dd073214f0873d74ea3263b78bc980ed8c45020c8c127c0192b13bb19133</cites><orcidid>0000-0002-6402-8008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961216304288$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27614163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Charan, Himanshu</creatorcontrib><creatorcontrib>Kinzel, Julia</creatorcontrib><creatorcontrib>Glebe, Ulrich</creatorcontrib><creatorcontrib>Anand, Deepak</creatorcontrib><creatorcontrib>Garakani, Tayebeh Mirzaei</creatorcontrib><creatorcontrib>Zhu, Leilei</creatorcontrib><creatorcontrib>Bocola, Marco</creatorcontrib><creatorcontrib>Schwaneberg, Ulrich</creatorcontrib><creatorcontrib>Böker, Alexander</creatorcontrib><title>Grafting PNIPAAm from β-barrel shaped transmembrane nanopores</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established the conjugate formation with a class of transmembrane proteins and grow polymer chains from the ferric hydroxamate uptake protein component A (FhuA; a β-barrel transmembrane protein of Escherichia coli ). As the lysine residues of naturally occurring FhuA are distributed over the whole protein, FhuA was reengineered to have up to 11 lysines, distributed symmetrically in a rim on the membrane exposed side (outside) of the protein channel and exclusively above the hydrophobic region. Reengineering of FhuA ensures a polymer growth only on the outside of the β-barrel and prevents blockage of the channel as a result of the polymerization. A water-soluble initiator for controlled radical polymerization (CRP) was consecutively linked to the lysine residues of FhuA and N -isopropylacrylamide (NIPAAm) polymerized under copper-mediated CRP conditions. The conjugate formation was analyzed by using MALDI-ToF mass spectrometry, SDS-PAGE, circular dichroism spectroscopy, analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy and size exclusion chromatography. Such conjugates combine the specific functions of the transmembrane proteins, like maintaining membrane potential gradients or translocation of substrates with the unique properties of synthetic polymers such as temperature and pH stimuli handles. FhuA-PNIPAAm conjugates will serve as functional nanosized building blocks for applications in targeted drug delivery, self-assembly systems, functional membranes and transmembrane protein gated nanoreactors.</description><subject>Acrylic Resins - chemistry</subject><subject>Advanced Basic Science</subject><subject>Bacterial Outer Membrane Proteins - chemistry</subject><subject>Bacterial Outer Membrane Proteins - genetics</subject><subject>Bacterial Outer Membrane Proteins - ultrastructure</subject><subject>BBTP</subject><subject>Channels</subject><subject>Conjugates</subject><subject>Dentistry</subject><subject>Escherichia coli</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - ultrastructure</subject><subject>FhuA</subject><subject>Grafting-from polymerization</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lysine</subject><subject>Membranes</subject><subject>Molecular Conformation</subject><subject>Nanopores - ultrastructure</subject><subject>NIPAAm</subject><subject>Polymerization</subject><subject>Protein Engineering - methods</subject><subject>Protein-polymer conjugate</subject><subject>Proteins</subject><subject>Reengineering</subject><subject>Self assembly</subject><subject>Structure-Activity Relationship</subject><subject>Transmembrane protein</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9u1DAQxi1ERZfCK6CIE5ekM7aTOBwqrVpoK1WlEnC2bGcCXvJnsbNIfS0ehGfC0Zaq4rSnka3fzHz29zH2FqFAwOp0U1g_DWam4E0fC57uClAFCPGMrVDVKi8bKJ-zFaDkeVMhP2YvY9xAOoPkL9gxryuUWIkVO7sMppv9-C27u72-W6-HrAvTkP35nVsTAvVZ_G621GZzMGMcaLCpUjaacdpOgeIrdtQlDfT6oZ6wrx8_fDm_ym8-XV6fr29yVwLOuassYNtCLTjKDlQt2lqSEbwStlbWNQqoVU6WwMEph7x2gA23KKzFBoU4Ye_2c7dh-rmjOOvBR0d9n9RMu6hRyVIJnp53AMrrBriU5SEol1XZNAv6fo-6MMUYqNPb4AcT7jWCXlzRG_3UFb24okHp5EpqfvOwZ2cHah9b_9mQgIs9QOkPf3kKOjpPo6PWB3Kzbid_2J6z_8a43o_emf4H3VPcTLswLj2oI9egPy_5WOKRJKRcKCX-AhQtt54</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Charan, Himanshu</creator><creator>Kinzel, Julia</creator><creator>Glebe, Ulrich</creator><creator>Anand, Deepak</creator><creator>Garakani, Tayebeh Mirzaei</creator><creator>Zhu, Leilei</creator><creator>Bocola, Marco</creator><creator>Schwaneberg, Ulrich</creator><creator>Böker, Alexander</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6402-8008</orcidid></search><sort><creationdate>20161101</creationdate><title>Grafting PNIPAAm from β-barrel shaped transmembrane nanopores</title><author>Charan, Himanshu ; Kinzel, Julia ; Glebe, Ulrich ; Anand, Deepak ; Garakani, Tayebeh Mirzaei ; Zhu, Leilei ; Bocola, Marco ; Schwaneberg, Ulrich ; Böker, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-c6b01dd073214f0873d74ea3263b78bc980ed8c45020c8c127c0192b13bb19133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acrylic Resins - chemistry</topic><topic>Advanced Basic Science</topic><topic>Bacterial Outer Membrane Proteins - chemistry</topic><topic>Bacterial Outer Membrane Proteins - genetics</topic><topic>Bacterial Outer Membrane Proteins - ultrastructure</topic><topic>BBTP</topic><topic>Channels</topic><topic>Conjugates</topic><topic>Dentistry</topic><topic>Escherichia coli</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - ultrastructure</topic><topic>FhuA</topic><topic>Grafting-from polymerization</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lysine</topic><topic>Membranes</topic><topic>Molecular Conformation</topic><topic>Nanopores - ultrastructure</topic><topic>NIPAAm</topic><topic>Polymerization</topic><topic>Protein Engineering - methods</topic><topic>Protein-polymer conjugate</topic><topic>Proteins</topic><topic>Reengineering</topic><topic>Self assembly</topic><topic>Structure-Activity Relationship</topic><topic>Transmembrane protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charan, Himanshu</creatorcontrib><creatorcontrib>Kinzel, Julia</creatorcontrib><creatorcontrib>Glebe, Ulrich</creatorcontrib><creatorcontrib>Anand, Deepak</creatorcontrib><creatorcontrib>Garakani, Tayebeh Mirzaei</creatorcontrib><creatorcontrib>Zhu, Leilei</creatorcontrib><creatorcontrib>Bocola, Marco</creatorcontrib><creatorcontrib>Schwaneberg, Ulrich</creatorcontrib><creatorcontrib>Böker, Alexander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charan, Himanshu</au><au>Kinzel, Julia</au><au>Glebe, Ulrich</au><au>Anand, Deepak</au><au>Garakani, Tayebeh Mirzaei</au><au>Zhu, Leilei</au><au>Bocola, Marco</au><au>Schwaneberg, Ulrich</au><au>Böker, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grafting PNIPAAm from β-barrel shaped transmembrane nanopores</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>107</volume><spage>115</spage><epage>123</epage><pages>115-123</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established the conjugate formation with a class of transmembrane proteins and grow polymer chains from the ferric hydroxamate uptake protein component A (FhuA; a β-barrel transmembrane protein of Escherichia coli ). As the lysine residues of naturally occurring FhuA are distributed over the whole protein, FhuA was reengineered to have up to 11 lysines, distributed symmetrically in a rim on the membrane exposed side (outside) of the protein channel and exclusively above the hydrophobic region. Reengineering of FhuA ensures a polymer growth only on the outside of the β-barrel and prevents blockage of the channel as a result of the polymerization. A water-soluble initiator for controlled radical polymerization (CRP) was consecutively linked to the lysine residues of FhuA and N -isopropylacrylamide (NIPAAm) polymerized under copper-mediated CRP conditions. The conjugate formation was analyzed by using MALDI-ToF mass spectrometry, SDS-PAGE, circular dichroism spectroscopy, analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy and size exclusion chromatography. Such conjugates combine the specific functions of the transmembrane proteins, like maintaining membrane potential gradients or translocation of substrates with the unique properties of synthetic polymers such as temperature and pH stimuli handles. FhuA-PNIPAAm conjugates will serve as functional nanosized building blocks for applications in targeted drug delivery, self-assembly systems, functional membranes and transmembrane protein gated nanoreactors.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>27614163</pmid><doi>10.1016/j.biomaterials.2016.08.033</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6402-8008</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2016-11, Vol.107, p.115-123 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845832404 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Acrylic Resins - chemistry Advanced Basic Science Bacterial Outer Membrane Proteins - chemistry Bacterial Outer Membrane Proteins - genetics Bacterial Outer Membrane Proteins - ultrastructure BBTP Channels Conjugates Dentistry Escherichia coli Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - ultrastructure FhuA Grafting-from polymerization Lipid Bilayers - chemistry Lysine Membranes Molecular Conformation Nanopores - ultrastructure NIPAAm Polymerization Protein Engineering - methods Protein-polymer conjugate Proteins Reengineering Self assembly Structure-Activity Relationship Transmembrane protein |
title | Grafting PNIPAAm from β-barrel shaped transmembrane nanopores |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T21%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grafting%20PNIPAAm%20from%20%CE%B2-barrel%20shaped%20transmembrane%20nanopores&rft.jtitle=Biomaterials&rft.au=Charan,%20Himanshu&rft.date=2016-11-01&rft.volume=107&rft.spage=115&rft.epage=123&rft.pages=115-123&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2016.08.033&rft_dat=%3Cproquest_cross%3E1827902445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1822465995&rft_id=info:pmid/27614163&rft_els_id=S0142961216304288&rfr_iscdi=true |