Simultaneous Electrochemical Impedance Spectroscopy and Localized Surface Plasmon Resonance in a Microfluidic Chip: New Insights into the Spatial Origin of the Signal

A novel flow-through sensor based on electrochemical impedance spectroscopy (EIS) and localized surface plasmon resonance (LSPR) for analyzing biomolecular interactions under flow and static conditions is developed and characterized. The sensor consists of a double-side gold-coated perforated polyca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2016-10, Vol.88 (19), p.9590-9596
Hauptverfasser: Lazar, Jaroslav, Rosencrantz, Ruben R., Elling, Lothar, Schnakenberg, Uwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9596
container_issue 19
container_start_page 9590
container_title Analytical chemistry (Washington)
container_volume 88
creator Lazar, Jaroslav
Rosencrantz, Ruben R.
Elling, Lothar
Schnakenberg, Uwe
description A novel flow-through sensor based on electrochemical impedance spectroscopy (EIS) and localized surface plasmon resonance (LSPR) for analyzing biomolecular interactions under flow and static conditions is developed and characterized. The sensor consists of a double-side gold-coated perforated polycarbonate membrane as part of a microfluidic system made of poly­(dimethylsiloxane) (PDMS). LSPR and EIS measurements are carried out simultaneously by applying media changes (water to NaCl solutions), unspecific adsorption of bovine serum albumin (BSA), or specific lectin binding on glycopolymer brushes. For BSA binding at the surface, EIS sensor signals mainly contain information from the binding activities at the sensor surface at low frequencies, whereas at high frequencies the change of bulk medium is the main contribution to the EIS signal. Here, the LSPR signal corresponds with EIS signal at high frequency. In contrast, in the case of lectin binding on glycopolymer brushes (3.4 nm thick), where the binding mainly takes place in the brush layer in the vicinity of the surface, LSPR data are correlated with the EIS signals at low frequencies. This leads to the conclusion that the origin of LSPR signals strongly depends on surface coverage and can be specified by simultaneously carrying out EIS measurements.
doi_str_mv 10.1021/acs.analchem.6b02307
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845831063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4210413491</sourcerecordid><originalsourceid>FETCH-LOGICAL-a492t-bae929a5ad2e6a405619c709be8cd32130dbb31f46d0a73759c26c9b244be7853</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EotPCGyBkiU03Ga5_8mN2aFTKSANFDKyjG8eZceXEIU6EygPxnDjNFCQWiJWl6--co3sPIS8YrBlw9hp1WGOHTh9Nu84q4ALyR2TFUg5JVhT8MVkBgEh4DnBGzkO4BWAMWPaUnPE8AwkyX5Gfe9tObsTO-CnQK2f0OPjZ0mp0dNv2psZOG7rv73-C9v0dxa6mOx8B-8PUdD8NDUbkk8PQ-o5-NsF39yLbUaQfrB584yZbW003R9u_oR_Nd7rtgj0cxxCh0dPxOEfgaGPozWAPUembZWoPccln5EmDLpjnp_eCfH139WXzPtndXG83b3cJSsXHpEKjuMIUa24ylJBmTOkcVGUKXQvOBNRVJVgjsxowF3mqNM-0qriUlcmLVFyQy8W3H_y3yYSxbG3QxrnlQCUrZFoIBpn4D1SkomAqlRF99Rd666chrjVTsQvOU8UiJRcq3iuEwTRlP9gWh7uSQTlXXsbKy4fKy1PlUfbyZD5Vral_ix46jgAswCz_E_wvz1-9uLxy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1827622591</pqid></control><display><type>article</type><title>Simultaneous Electrochemical Impedance Spectroscopy and Localized Surface Plasmon Resonance in a Microfluidic Chip: New Insights into the Spatial Origin of the Signal</title><source>ACS Publications</source><creator>Lazar, Jaroslav ; Rosencrantz, Ruben R. ; Elling, Lothar ; Schnakenberg, Uwe</creator><creatorcontrib>Lazar, Jaroslav ; Rosencrantz, Ruben R. ; Elling, Lothar ; Schnakenberg, Uwe</creatorcontrib><description>A novel flow-through sensor based on electrochemical impedance spectroscopy (EIS) and localized surface plasmon resonance (LSPR) for analyzing biomolecular interactions under flow and static conditions is developed and characterized. The sensor consists of a double-side gold-coated perforated polycarbonate membrane as part of a microfluidic system made of poly­(dimethylsiloxane) (PDMS). LSPR and EIS measurements are carried out simultaneously by applying media changes (water to NaCl solutions), unspecific adsorption of bovine serum albumin (BSA), or specific lectin binding on glycopolymer brushes. For BSA binding at the surface, EIS sensor signals mainly contain information from the binding activities at the sensor surface at low frequencies, whereas at high frequencies the change of bulk medium is the main contribution to the EIS signal. Here, the LSPR signal corresponds with EIS signal at high frequency. In contrast, in the case of lectin binding on glycopolymer brushes (3.4 nm thick), where the binding mainly takes place in the brush layer in the vicinity of the surface, LSPR data are correlated with the EIS signals at low frequencies. This leads to the conclusion that the origin of LSPR signals strongly depends on surface coverage and can be specified by simultaneously carrying out EIS measurements.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b02307</identifier><identifier>PMID: 27604047</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Analytical chemistry ; Binding ; Brushes ; Electrochemical impedance spectroscopy ; Frequencies ; Lectins ; Low frequencies ; Membranes ; Microfluidics ; Sensors ; Spectrum analysis ; Surface chemistry</subject><ispartof>Analytical chemistry (Washington), 2016-10, Vol.88 (19), p.9590-9596</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 4, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a492t-bae929a5ad2e6a405619c709be8cd32130dbb31f46d0a73759c26c9b244be7853</citedby><cites>FETCH-LOGICAL-a492t-bae929a5ad2e6a405619c709be8cd32130dbb31f46d0a73759c26c9b244be7853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.6b02307$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.6b02307$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27604047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lazar, Jaroslav</creatorcontrib><creatorcontrib>Rosencrantz, Ruben R.</creatorcontrib><creatorcontrib>Elling, Lothar</creatorcontrib><creatorcontrib>Schnakenberg, Uwe</creatorcontrib><title>Simultaneous Electrochemical Impedance Spectroscopy and Localized Surface Plasmon Resonance in a Microfluidic Chip: New Insights into the Spatial Origin of the Signal</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A novel flow-through sensor based on electrochemical impedance spectroscopy (EIS) and localized surface plasmon resonance (LSPR) for analyzing biomolecular interactions under flow and static conditions is developed and characterized. The sensor consists of a double-side gold-coated perforated polycarbonate membrane as part of a microfluidic system made of poly­(dimethylsiloxane) (PDMS). LSPR and EIS measurements are carried out simultaneously by applying media changes (water to NaCl solutions), unspecific adsorption of bovine serum albumin (BSA), or specific lectin binding on glycopolymer brushes. For BSA binding at the surface, EIS sensor signals mainly contain information from the binding activities at the sensor surface at low frequencies, whereas at high frequencies the change of bulk medium is the main contribution to the EIS signal. Here, the LSPR signal corresponds with EIS signal at high frequency. In contrast, in the case of lectin binding on glycopolymer brushes (3.4 nm thick), where the binding mainly takes place in the brush layer in the vicinity of the surface, LSPR data are correlated with the EIS signals at low frequencies. This leads to the conclusion that the origin of LSPR signals strongly depends on surface coverage and can be specified by simultaneously carrying out EIS measurements.</description><subject>Adsorption</subject><subject>Analytical chemistry</subject><subject>Binding</subject><subject>Brushes</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Frequencies</subject><subject>Lectins</subject><subject>Low frequencies</subject><subject>Membranes</subject><subject>Microfluidics</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>Surface chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1DAUhS0EotPCGyBkiU03Ga5_8mN2aFTKSANFDKyjG8eZceXEIU6EygPxnDjNFCQWiJWl6--co3sPIS8YrBlw9hp1WGOHTh9Nu84q4ALyR2TFUg5JVhT8MVkBgEh4DnBGzkO4BWAMWPaUnPE8AwkyX5Gfe9tObsTO-CnQK2f0OPjZ0mp0dNv2psZOG7rv73-C9v0dxa6mOx8B-8PUdD8NDUbkk8PQ-o5-NsF39yLbUaQfrB584yZbW003R9u_oR_Nd7rtgj0cxxCh0dPxOEfgaGPozWAPUembZWoPccln5EmDLpjnp_eCfH139WXzPtndXG83b3cJSsXHpEKjuMIUa24ylJBmTOkcVGUKXQvOBNRVJVgjsxowF3mqNM-0qriUlcmLVFyQy8W3H_y3yYSxbG3QxrnlQCUrZFoIBpn4D1SkomAqlRF99Rd666chrjVTsQvOU8UiJRcq3iuEwTRlP9gWh7uSQTlXXsbKy4fKy1PlUfbyZD5Vral_ix46jgAswCz_E_wvz1-9uLxy</recordid><startdate>20161004</startdate><enddate>20161004</enddate><creator>Lazar, Jaroslav</creator><creator>Rosencrantz, Ruben R.</creator><creator>Elling, Lothar</creator><creator>Schnakenberg, Uwe</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20161004</creationdate><title>Simultaneous Electrochemical Impedance Spectroscopy and Localized Surface Plasmon Resonance in a Microfluidic Chip: New Insights into the Spatial Origin of the Signal</title><author>Lazar, Jaroslav ; Rosencrantz, Ruben R. ; Elling, Lothar ; Schnakenberg, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a492t-bae929a5ad2e6a405619c709be8cd32130dbb31f46d0a73759c26c9b244be7853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adsorption</topic><topic>Analytical chemistry</topic><topic>Binding</topic><topic>Brushes</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Frequencies</topic><topic>Lectins</topic><topic>Low frequencies</topic><topic>Membranes</topic><topic>Microfluidics</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazar, Jaroslav</creatorcontrib><creatorcontrib>Rosencrantz, Ruben R.</creatorcontrib><creatorcontrib>Elling, Lothar</creatorcontrib><creatorcontrib>Schnakenberg, Uwe</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazar, Jaroslav</au><au>Rosencrantz, Ruben R.</au><au>Elling, Lothar</au><au>Schnakenberg, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Electrochemical Impedance Spectroscopy and Localized Surface Plasmon Resonance in a Microfluidic Chip: New Insights into the Spatial Origin of the Signal</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2016-10-04</date><risdate>2016</risdate><volume>88</volume><issue>19</issue><spage>9590</spage><epage>9596</epage><pages>9590-9596</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A novel flow-through sensor based on electrochemical impedance spectroscopy (EIS) and localized surface plasmon resonance (LSPR) for analyzing biomolecular interactions under flow and static conditions is developed and characterized. The sensor consists of a double-side gold-coated perforated polycarbonate membrane as part of a microfluidic system made of poly­(dimethylsiloxane) (PDMS). LSPR and EIS measurements are carried out simultaneously by applying media changes (water to NaCl solutions), unspecific adsorption of bovine serum albumin (BSA), or specific lectin binding on glycopolymer brushes. For BSA binding at the surface, EIS sensor signals mainly contain information from the binding activities at the sensor surface at low frequencies, whereas at high frequencies the change of bulk medium is the main contribution to the EIS signal. Here, the LSPR signal corresponds with EIS signal at high frequency. In contrast, in the case of lectin binding on glycopolymer brushes (3.4 nm thick), where the binding mainly takes place in the brush layer in the vicinity of the surface, LSPR data are correlated with the EIS signals at low frequencies. This leads to the conclusion that the origin of LSPR signals strongly depends on surface coverage and can be specified by simultaneously carrying out EIS measurements.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27604047</pmid><doi>10.1021/acs.analchem.6b02307</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2016-10, Vol.88 (19), p.9590-9596
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1845831063
source ACS Publications
subjects Adsorption
Analytical chemistry
Binding
Brushes
Electrochemical impedance spectroscopy
Frequencies
Lectins
Low frequencies
Membranes
Microfluidics
Sensors
Spectrum analysis
Surface chemistry
title Simultaneous Electrochemical Impedance Spectroscopy and Localized Surface Plasmon Resonance in a Microfluidic Chip: New Insights into the Spatial Origin of the Signal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Electrochemical%20Impedance%20Spectroscopy%20and%20Localized%20Surface%20Plasmon%20Resonance%20in%20a%20Microfluidic%20Chip:%20New%20Insights%20into%20the%20Spatial%20Origin%20of%20the%20Signal&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Lazar,%20Jaroslav&rft.date=2016-10-04&rft.volume=88&rft.issue=19&rft.spage=9590&rft.epage=9596&rft.pages=9590-9596&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b02307&rft_dat=%3Cproquest_cross%3E4210413491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1827622591&rft_id=info:pmid/27604047&rfr_iscdi=true