Intelligent system for lighting control in smart cities
This paper presents an adaptive architecture that centralizes the control of public lighting and intelligent management to economize lighting and maintain maximum visual comfort in illuminated areas. To carry out this management, the architecture merges various techniques of artificial intelligence...
Gespeichert in:
Veröffentlicht in: | Information sciences 2016-12, Vol.372, p.241-255 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 255 |
---|---|
container_issue | |
container_start_page | 241 |
container_title | Information sciences |
container_volume | 372 |
creator | De Paz, Juan F. Bajo, Javier Rodríguez, Sara Villarrubia, Gabriel Corchado, Juan M. |
description | This paper presents an adaptive architecture that centralizes the control of public lighting and intelligent management to economize lighting and maintain maximum visual comfort in illuminated areas. To carry out this management, the architecture merges various techniques of artificial intelligence (AI) and statistics such as artificial neural networks (ANN), multi-agent systems (MAS), EM algorithm, methods based on ANOVA, and a Service Oriented Approach (SOA). It achieves optimization in terms of both energy consumption and cost by using a modular architecture, and is fully adaptable to current lighting systems. The architecture was successfully tested and validated and continues to be in development. |
doi_str_mv | 10.1016/j.ins.2016.08.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845830040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025516306119</els_id><sourcerecordid>1845830040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-32412ae37f95d7764585fe6a7e1e7391ad243f341fa518bd4d8739a8f0d4ebca3</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4Ab3v0suvLx25SPEnRWih40XNIsy81ZZutSSr035tSz57eY5gZZoaQewoNBdo9bhsfUsPK24BqQLQXZEKVZHXHZvSSTAAY1MDa9prcpLQFACG7bkLkMmQcBr_BkKt0TBl3lRtjVZCv7MOmsmPIcRwqH6q0MzFX1meP6ZZcOTMkvPu7U_L5-vIxf6tX74vl_HlVWy55rjkTlBnk0s3aXspOtKp12BmJFCWfUdMzwR0X1JmWqnUvelVgoxz0AtfW8Cl5OPvu4_h9wJT1zidbEpuA4yFpqoolL22gUOmZauOYUkSn99GXyEdNQZ9G0ltdRtKnkTQoXUYqmqezBkuHH49RJ-sxWOx9RJt1P_p_1L_0hG8j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845830040</pqid></control><display><type>article</type><title>Intelligent system for lighting control in smart cities</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>De Paz, Juan F. ; Bajo, Javier ; Rodríguez, Sara ; Villarrubia, Gabriel ; Corchado, Juan M.</creator><creatorcontrib>De Paz, Juan F. ; Bajo, Javier ; Rodríguez, Sara ; Villarrubia, Gabriel ; Corchado, Juan M.</creatorcontrib><description>This paper presents an adaptive architecture that centralizes the control of public lighting and intelligent management to economize lighting and maintain maximum visual comfort in illuminated areas. To carry out this management, the architecture merges various techniques of artificial intelligence (AI) and statistics such as artificial neural networks (ANN), multi-agent systems (MAS), EM algorithm, methods based on ANOVA, and a Service Oriented Approach (SOA). It achieves optimization in terms of both energy consumption and cost by using a modular architecture, and is fully adaptable to current lighting systems. The architecture was successfully tested and validated and continues to be in development.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2016.08.045</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Analysis of variance ; Architecture (computers) ; Artificial intelligence ; Autonomous control ; Distributed systems ; Illumination ; Intelligent systems ; Learning theory ; Light sensors ; Lighting ; Management ; Neural networks ; Street lighting</subject><ispartof>Information sciences, 2016-12, Vol.372, p.241-255</ispartof><rights>2016 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-32412ae37f95d7764585fe6a7e1e7391ad243f341fa518bd4d8739a8f0d4ebca3</citedby><cites>FETCH-LOGICAL-c373t-32412ae37f95d7764585fe6a7e1e7391ad243f341fa518bd4d8739a8f0d4ebca3</cites><orcidid>0000-0003-0824-4133</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ins.2016.08.045$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>De Paz, Juan F.</creatorcontrib><creatorcontrib>Bajo, Javier</creatorcontrib><creatorcontrib>Rodríguez, Sara</creatorcontrib><creatorcontrib>Villarrubia, Gabriel</creatorcontrib><creatorcontrib>Corchado, Juan M.</creatorcontrib><title>Intelligent system for lighting control in smart cities</title><title>Information sciences</title><description>This paper presents an adaptive architecture that centralizes the control of public lighting and intelligent management to economize lighting and maintain maximum visual comfort in illuminated areas. To carry out this management, the architecture merges various techniques of artificial intelligence (AI) and statistics such as artificial neural networks (ANN), multi-agent systems (MAS), EM algorithm, methods based on ANOVA, and a Service Oriented Approach (SOA). It achieves optimization in terms of both energy consumption and cost by using a modular architecture, and is fully adaptable to current lighting systems. The architecture was successfully tested and validated and continues to be in development.</description><subject>Analysis of variance</subject><subject>Architecture (computers)</subject><subject>Artificial intelligence</subject><subject>Autonomous control</subject><subject>Distributed systems</subject><subject>Illumination</subject><subject>Intelligent systems</subject><subject>Learning theory</subject><subject>Light sensors</subject><subject>Lighting</subject><subject>Management</subject><subject>Neural networks</subject><subject>Street lighting</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4Ab3v0suvLx25SPEnRWih40XNIsy81ZZutSSr035tSz57eY5gZZoaQewoNBdo9bhsfUsPK24BqQLQXZEKVZHXHZvSSTAAY1MDa9prcpLQFACG7bkLkMmQcBr_BkKt0TBl3lRtjVZCv7MOmsmPIcRwqH6q0MzFX1meP6ZZcOTMkvPu7U_L5-vIxf6tX74vl_HlVWy55rjkTlBnk0s3aXspOtKp12BmJFCWfUdMzwR0X1JmWqnUvelVgoxz0AtfW8Cl5OPvu4_h9wJT1zidbEpuA4yFpqoolL22gUOmZauOYUkSn99GXyEdNQZ9G0ltdRtKnkTQoXUYqmqezBkuHH49RJ-sxWOx9RJt1P_p_1L_0hG8j</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>De Paz, Juan F.</creator><creator>Bajo, Javier</creator><creator>Rodríguez, Sara</creator><creator>Villarrubia, Gabriel</creator><creator>Corchado, Juan M.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0824-4133</orcidid></search><sort><creationdate>20161201</creationdate><title>Intelligent system for lighting control in smart cities</title><author>De Paz, Juan F. ; Bajo, Javier ; Rodríguez, Sara ; Villarrubia, Gabriel ; Corchado, Juan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-32412ae37f95d7764585fe6a7e1e7391ad243f341fa518bd4d8739a8f0d4ebca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis of variance</topic><topic>Architecture (computers)</topic><topic>Artificial intelligence</topic><topic>Autonomous control</topic><topic>Distributed systems</topic><topic>Illumination</topic><topic>Intelligent systems</topic><topic>Learning theory</topic><topic>Light sensors</topic><topic>Lighting</topic><topic>Management</topic><topic>Neural networks</topic><topic>Street lighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Paz, Juan F.</creatorcontrib><creatorcontrib>Bajo, Javier</creatorcontrib><creatorcontrib>Rodríguez, Sara</creatorcontrib><creatorcontrib>Villarrubia, Gabriel</creatorcontrib><creatorcontrib>Corchado, Juan M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Paz, Juan F.</au><au>Bajo, Javier</au><au>Rodríguez, Sara</au><au>Villarrubia, Gabriel</au><au>Corchado, Juan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent system for lighting control in smart cities</atitle><jtitle>Information sciences</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>372</volume><spage>241</spage><epage>255</epage><pages>241-255</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>This paper presents an adaptive architecture that centralizes the control of public lighting and intelligent management to economize lighting and maintain maximum visual comfort in illuminated areas. To carry out this management, the architecture merges various techniques of artificial intelligence (AI) and statistics such as artificial neural networks (ANN), multi-agent systems (MAS), EM algorithm, methods based on ANOVA, and a Service Oriented Approach (SOA). It achieves optimization in terms of both energy consumption and cost by using a modular architecture, and is fully adaptable to current lighting systems. The architecture was successfully tested and validated and continues to be in development.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2016.08.045</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0824-4133</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0255 |
ispartof | Information sciences, 2016-12, Vol.372, p.241-255 |
issn | 0020-0255 1872-6291 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845830040 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Analysis of variance Architecture (computers) Artificial intelligence Autonomous control Distributed systems Illumination Intelligent systems Learning theory Light sensors Lighting Management Neural networks Street lighting |
title | Intelligent system for lighting control in smart cities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20system%20for%20lighting%20control%20in%20smart%20cities&rft.jtitle=Information%20sciences&rft.au=De%20Paz,%20Juan%20F.&rft.date=2016-12-01&rft.volume=372&rft.spage=241&rft.epage=255&rft.pages=241-255&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2016.08.045&rft_dat=%3Cproquest_cross%3E1845830040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845830040&rft_id=info:pmid/&rft_els_id=S0020025516306119&rfr_iscdi=true |