Intelligent system for lighting control in smart cities

This paper presents an adaptive architecture that centralizes the control of public lighting and intelligent management to economize lighting and maintain maximum visual comfort in illuminated areas. To carry out this management, the architecture merges various techniques of artificial intelligence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2016-12, Vol.372, p.241-255
Hauptverfasser: De Paz, Juan F., Bajo, Javier, Rodríguez, Sara, Villarrubia, Gabriel, Corchado, Juan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue
container_start_page 241
container_title Information sciences
container_volume 372
creator De Paz, Juan F.
Bajo, Javier
Rodríguez, Sara
Villarrubia, Gabriel
Corchado, Juan M.
description This paper presents an adaptive architecture that centralizes the control of public lighting and intelligent management to economize lighting and maintain maximum visual comfort in illuminated areas. To carry out this management, the architecture merges various techniques of artificial intelligence (AI) and statistics such as artificial neural networks (ANN), multi-agent systems (MAS), EM algorithm, methods based on ANOVA, and a Service Oriented Approach (SOA). It achieves optimization in terms of both energy consumption and cost by using a modular architecture, and is fully adaptable to current lighting systems. The architecture was successfully tested and validated and continues to be in development.
doi_str_mv 10.1016/j.ins.2016.08.045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845830040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025516306119</els_id><sourcerecordid>1845830040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-32412ae37f95d7764585fe6a7e1e7391ad243f341fa518bd4d8739a8f0d4ebca3</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4Ab3v0suvLx25SPEnRWih40XNIsy81ZZutSSr035tSz57eY5gZZoaQewoNBdo9bhsfUsPK24BqQLQXZEKVZHXHZvSSTAAY1MDa9prcpLQFACG7bkLkMmQcBr_BkKt0TBl3lRtjVZCv7MOmsmPIcRwqH6q0MzFX1meP6ZZcOTMkvPu7U_L5-vIxf6tX74vl_HlVWy55rjkTlBnk0s3aXspOtKp12BmJFCWfUdMzwR0X1JmWqnUvelVgoxz0AtfW8Cl5OPvu4_h9wJT1zidbEpuA4yFpqoolL22gUOmZauOYUkSn99GXyEdNQZ9G0ltdRtKnkTQoXUYqmqezBkuHH49RJ-sxWOx9RJt1P_p_1L_0hG8j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845830040</pqid></control><display><type>article</type><title>Intelligent system for lighting control in smart cities</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>De Paz, Juan F. ; Bajo, Javier ; Rodríguez, Sara ; Villarrubia, Gabriel ; Corchado, Juan M.</creator><creatorcontrib>De Paz, Juan F. ; Bajo, Javier ; Rodríguez, Sara ; Villarrubia, Gabriel ; Corchado, Juan M.</creatorcontrib><description>This paper presents an adaptive architecture that centralizes the control of public lighting and intelligent management to economize lighting and maintain maximum visual comfort in illuminated areas. To carry out this management, the architecture merges various techniques of artificial intelligence (AI) and statistics such as artificial neural networks (ANN), multi-agent systems (MAS), EM algorithm, methods based on ANOVA, and a Service Oriented Approach (SOA). It achieves optimization in terms of both energy consumption and cost by using a modular architecture, and is fully adaptable to current lighting systems. The architecture was successfully tested and validated and continues to be in development.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2016.08.045</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Analysis of variance ; Architecture (computers) ; Artificial intelligence ; Autonomous control ; Distributed systems ; Illumination ; Intelligent systems ; Learning theory ; Light sensors ; Lighting ; Management ; Neural networks ; Street lighting</subject><ispartof>Information sciences, 2016-12, Vol.372, p.241-255</ispartof><rights>2016 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-32412ae37f95d7764585fe6a7e1e7391ad243f341fa518bd4d8739a8f0d4ebca3</citedby><cites>FETCH-LOGICAL-c373t-32412ae37f95d7764585fe6a7e1e7391ad243f341fa518bd4d8739a8f0d4ebca3</cites><orcidid>0000-0003-0824-4133</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ins.2016.08.045$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>De Paz, Juan F.</creatorcontrib><creatorcontrib>Bajo, Javier</creatorcontrib><creatorcontrib>Rodríguez, Sara</creatorcontrib><creatorcontrib>Villarrubia, Gabriel</creatorcontrib><creatorcontrib>Corchado, Juan M.</creatorcontrib><title>Intelligent system for lighting control in smart cities</title><title>Information sciences</title><description>This paper presents an adaptive architecture that centralizes the control of public lighting and intelligent management to economize lighting and maintain maximum visual comfort in illuminated areas. To carry out this management, the architecture merges various techniques of artificial intelligence (AI) and statistics such as artificial neural networks (ANN), multi-agent systems (MAS), EM algorithm, methods based on ANOVA, and a Service Oriented Approach (SOA). It achieves optimization in terms of both energy consumption and cost by using a modular architecture, and is fully adaptable to current lighting systems. The architecture was successfully tested and validated and continues to be in development.</description><subject>Analysis of variance</subject><subject>Architecture (computers)</subject><subject>Artificial intelligence</subject><subject>Autonomous control</subject><subject>Distributed systems</subject><subject>Illumination</subject><subject>Intelligent systems</subject><subject>Learning theory</subject><subject>Light sensors</subject><subject>Lighting</subject><subject>Management</subject><subject>Neural networks</subject><subject>Street lighting</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4Ab3v0suvLx25SPEnRWih40XNIsy81ZZutSSr035tSz57eY5gZZoaQewoNBdo9bhsfUsPK24BqQLQXZEKVZHXHZvSSTAAY1MDa9prcpLQFACG7bkLkMmQcBr_BkKt0TBl3lRtjVZCv7MOmsmPIcRwqH6q0MzFX1meP6ZZcOTMkvPu7U_L5-vIxf6tX74vl_HlVWy55rjkTlBnk0s3aXspOtKp12BmJFCWfUdMzwR0X1JmWqnUvelVgoxz0AtfW8Cl5OPvu4_h9wJT1zidbEpuA4yFpqoolL22gUOmZauOYUkSn99GXyEdNQZ9G0ltdRtKnkTQoXUYqmqezBkuHH49RJ-sxWOx9RJt1P_p_1L_0hG8j</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>De Paz, Juan F.</creator><creator>Bajo, Javier</creator><creator>Rodríguez, Sara</creator><creator>Villarrubia, Gabriel</creator><creator>Corchado, Juan M.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0824-4133</orcidid></search><sort><creationdate>20161201</creationdate><title>Intelligent system for lighting control in smart cities</title><author>De Paz, Juan F. ; Bajo, Javier ; Rodríguez, Sara ; Villarrubia, Gabriel ; Corchado, Juan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-32412ae37f95d7764585fe6a7e1e7391ad243f341fa518bd4d8739a8f0d4ebca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis of variance</topic><topic>Architecture (computers)</topic><topic>Artificial intelligence</topic><topic>Autonomous control</topic><topic>Distributed systems</topic><topic>Illumination</topic><topic>Intelligent systems</topic><topic>Learning theory</topic><topic>Light sensors</topic><topic>Lighting</topic><topic>Management</topic><topic>Neural networks</topic><topic>Street lighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Paz, Juan F.</creatorcontrib><creatorcontrib>Bajo, Javier</creatorcontrib><creatorcontrib>Rodríguez, Sara</creatorcontrib><creatorcontrib>Villarrubia, Gabriel</creatorcontrib><creatorcontrib>Corchado, Juan M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Paz, Juan F.</au><au>Bajo, Javier</au><au>Rodríguez, Sara</au><au>Villarrubia, Gabriel</au><au>Corchado, Juan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent system for lighting control in smart cities</atitle><jtitle>Information sciences</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>372</volume><spage>241</spage><epage>255</epage><pages>241-255</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>This paper presents an adaptive architecture that centralizes the control of public lighting and intelligent management to economize lighting and maintain maximum visual comfort in illuminated areas. To carry out this management, the architecture merges various techniques of artificial intelligence (AI) and statistics such as artificial neural networks (ANN), multi-agent systems (MAS), EM algorithm, methods based on ANOVA, and a Service Oriented Approach (SOA). It achieves optimization in terms of both energy consumption and cost by using a modular architecture, and is fully adaptable to current lighting systems. The architecture was successfully tested and validated and continues to be in development.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2016.08.045</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0824-4133</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2016-12, Vol.372, p.241-255
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_1845830040
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Analysis of variance
Architecture (computers)
Artificial intelligence
Autonomous control
Distributed systems
Illumination
Intelligent systems
Learning theory
Light sensors
Lighting
Management
Neural networks
Street lighting
title Intelligent system for lighting control in smart cities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20system%20for%20lighting%20control%20in%20smart%20cities&rft.jtitle=Information%20sciences&rft.au=De%20Paz,%20Juan%20F.&rft.date=2016-12-01&rft.volume=372&rft.spage=241&rft.epage=255&rft.pages=241-255&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2016.08.045&rft_dat=%3Cproquest_cross%3E1845830040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845830040&rft_id=info:pmid/&rft_els_id=S0020025516306119&rfr_iscdi=true