Strengthening mechanisms and dislocation processes in textured nanotwinned copper

We use molecular dynamics simulations to elucidate the deformation mechanisms of textured nanotwinned materials under tensile loading parallel to the twin boundary (TB). Our simulations reveal that the tensile strength of nanotwinned Cu increases monotonically as the twin spacing decreases. The stre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2016-10, Vol.676, p.474-486
Hauptverfasser: Zhao, Xing, Lu, Cheng, Tieu, Anh Kiet, Pei, Linqing, Zhang, Liang, Cheng, Kuiyu, Huang, Minghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 486
container_issue
container_start_page 474
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 676
creator Zhao, Xing
Lu, Cheng
Tieu, Anh Kiet
Pei, Linqing
Zhang, Liang
Cheng, Kuiyu
Huang, Minghui
description We use molecular dynamics simulations to elucidate the deformation mechanisms of textured nanotwinned materials under tensile loading parallel to the twin boundary (TB). Our simulations reveal that the tensile strength of nanotwinned Cu increases monotonically as the twin spacing decreases. The strengthening effect mainly results from TB restricting the transmission of dislocations across the TB. Throughout the simulations the transmissions of dislocations across the TBs dominate the plastic deformation. Both direct and indirect transmissions are identified at atomic level. Direct transmission involves either successive transmission of the leading and trailing partials as in the Fleischer cross-slip model or absorption and desorption of the extended dislocation as in the Friedel-Escaig cross-slip mechanism. In contrast, indirect transmission involves the formation of special superjogs. The persistent slip transfer leaves zigzag slip traces on the cross-sectional view and the inhomogeneous deformation leads to the formation of intersecting slip bands on the plane view.
doi_str_mv 10.1016/j.msea.2016.08.127
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845829639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509316310553</els_id><sourcerecordid>1845829639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-81f398e778526175f6c5bba5d140781d9d9aafa7b9e42666f3e480607ffd80a23</originalsourceid><addsrcrecordid>eNp9kMtOwzAURC0EEqXwA6yyZJNgx4kfEhtU8ZIqIQSsLde-bl0lTrBdHn9PqrJmdWcxM5p7ELokuCKYsOtt1SfQVT3pCouK1PwIzYjgtGwkZcdohmVNyhZLeorOUtpijEmD2xl6ec0RwjpvIPiwLnowGx186lOhgy2sT91gdPZDKMY4GEgJUuFDkeE77yLYIugw5C8fwqTNMI4Qz9GJ012Ci787R-_3d2-Lx3L5_PC0uF2WhpIml4I4KgVwLtqaEd46ZtrVSrd22sUFsdJKrZ3mKwlNzRhzFBqBGebOWYF1Tefo6tA7DfvYQcqq98lA1-kAwy4pIppW1JJROVnrg9XEIaUITo3R9zr-KILVnp_aqj0_teensFATvyl0cwjB9MSnh6iS8RAMWB_BZGUH_1_8F0cWeqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845829639</pqid></control><display><type>article</type><title>Strengthening mechanisms and dislocation processes in textured nanotwinned copper</title><source>Elsevier ScienceDirect Journals</source><creator>Zhao, Xing ; Lu, Cheng ; Tieu, Anh Kiet ; Pei, Linqing ; Zhang, Liang ; Cheng, Kuiyu ; Huang, Minghui</creator><creatorcontrib>Zhao, Xing ; Lu, Cheng ; Tieu, Anh Kiet ; Pei, Linqing ; Zhang, Liang ; Cheng, Kuiyu ; Huang, Minghui</creatorcontrib><description>We use molecular dynamics simulations to elucidate the deformation mechanisms of textured nanotwinned materials under tensile loading parallel to the twin boundary (TB). Our simulations reveal that the tensile strength of nanotwinned Cu increases monotonically as the twin spacing decreases. The strengthening effect mainly results from TB restricting the transmission of dislocations across the TB. Throughout the simulations the transmissions of dislocations across the TBs dominate the plastic deformation. Both direct and indirect transmissions are identified at atomic level. Direct transmission involves either successive transmission of the leading and trailing partials as in the Fleischer cross-slip model or absorption and desorption of the extended dislocation as in the Friedel-Escaig cross-slip mechanism. In contrast, indirect transmission involves the formation of special superjogs. The persistent slip transfer leaves zigzag slip traces on the cross-sectional view and the inhomogeneous deformation leads to the formation of intersecting slip bands on the plane view.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2016.08.127</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>COMPUTER SIMULATION ; Copper ; Cross slip ; Dislocation ; Dislocations ; Formations ; MICROSTRUCTURES ; Molecular dynamics ; Nanostructure ; Nanotwinned Cu ; Simulation ; Slip ; Slip transmission ; Strengthening ; Strengthening mechanism ; TENSILE STRENGTH ; TWINNING MECHANISMS</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2016-10, Vol.676, p.474-486</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-81f398e778526175f6c5bba5d140781d9d9aafa7b9e42666f3e480607ffd80a23</citedby><cites>FETCH-LOGICAL-c314t-81f398e778526175f6c5bba5d140781d9d9aafa7b9e42666f3e480607ffd80a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2016.08.127$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Zhao, Xing</creatorcontrib><creatorcontrib>Lu, Cheng</creatorcontrib><creatorcontrib>Tieu, Anh Kiet</creatorcontrib><creatorcontrib>Pei, Linqing</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Cheng, Kuiyu</creatorcontrib><creatorcontrib>Huang, Minghui</creatorcontrib><title>Strengthening mechanisms and dislocation processes in textured nanotwinned copper</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>We use molecular dynamics simulations to elucidate the deformation mechanisms of textured nanotwinned materials under tensile loading parallel to the twin boundary (TB). Our simulations reveal that the tensile strength of nanotwinned Cu increases monotonically as the twin spacing decreases. The strengthening effect mainly results from TB restricting the transmission of dislocations across the TB. Throughout the simulations the transmissions of dislocations across the TBs dominate the plastic deformation. Both direct and indirect transmissions are identified at atomic level. Direct transmission involves either successive transmission of the leading and trailing partials as in the Fleischer cross-slip model or absorption and desorption of the extended dislocation as in the Friedel-Escaig cross-slip mechanism. In contrast, indirect transmission involves the formation of special superjogs. The persistent slip transfer leaves zigzag slip traces on the cross-sectional view and the inhomogeneous deformation leads to the formation of intersecting slip bands on the plane view.</description><subject>COMPUTER SIMULATION</subject><subject>Copper</subject><subject>Cross slip</subject><subject>Dislocation</subject><subject>Dislocations</subject><subject>Formations</subject><subject>MICROSTRUCTURES</subject><subject>Molecular dynamics</subject><subject>Nanostructure</subject><subject>Nanotwinned Cu</subject><subject>Simulation</subject><subject>Slip</subject><subject>Slip transmission</subject><subject>Strengthening</subject><subject>Strengthening mechanism</subject><subject>TENSILE STRENGTH</subject><subject>TWINNING MECHANISMS</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAURC0EEqXwA6yyZJNgx4kfEhtU8ZIqIQSsLde-bl0lTrBdHn9PqrJmdWcxM5p7ELokuCKYsOtt1SfQVT3pCouK1PwIzYjgtGwkZcdohmVNyhZLeorOUtpijEmD2xl6ec0RwjpvIPiwLnowGx186lOhgy2sT91gdPZDKMY4GEgJUuFDkeE77yLYIugw5C8fwqTNMI4Qz9GJ012Ci787R-_3d2-Lx3L5_PC0uF2WhpIml4I4KgVwLtqaEd46ZtrVSrd22sUFsdJKrZ3mKwlNzRhzFBqBGebOWYF1Tefo6tA7DfvYQcqq98lA1-kAwy4pIppW1JJROVnrg9XEIaUITo3R9zr-KILVnp_aqj0_teensFATvyl0cwjB9MSnh6iS8RAMWB_BZGUH_1_8F0cWeqQ</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Zhao, Xing</creator><creator>Lu, Cheng</creator><creator>Tieu, Anh Kiet</creator><creator>Pei, Linqing</creator><creator>Zhang, Liang</creator><creator>Cheng, Kuiyu</creator><creator>Huang, Minghui</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20161001</creationdate><title>Strengthening mechanisms and dislocation processes in textured nanotwinned copper</title><author>Zhao, Xing ; Lu, Cheng ; Tieu, Anh Kiet ; Pei, Linqing ; Zhang, Liang ; Cheng, Kuiyu ; Huang, Minghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-81f398e778526175f6c5bba5d140781d9d9aafa7b9e42666f3e480607ffd80a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>COMPUTER SIMULATION</topic><topic>Copper</topic><topic>Cross slip</topic><topic>Dislocation</topic><topic>Dislocations</topic><topic>Formations</topic><topic>MICROSTRUCTURES</topic><topic>Molecular dynamics</topic><topic>Nanostructure</topic><topic>Nanotwinned Cu</topic><topic>Simulation</topic><topic>Slip</topic><topic>Slip transmission</topic><topic>Strengthening</topic><topic>Strengthening mechanism</topic><topic>TENSILE STRENGTH</topic><topic>TWINNING MECHANISMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xing</creatorcontrib><creatorcontrib>Lu, Cheng</creatorcontrib><creatorcontrib>Tieu, Anh Kiet</creatorcontrib><creatorcontrib>Pei, Linqing</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Cheng, Kuiyu</creatorcontrib><creatorcontrib>Huang, Minghui</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xing</au><au>Lu, Cheng</au><au>Tieu, Anh Kiet</au><au>Pei, Linqing</au><au>Zhang, Liang</au><au>Cheng, Kuiyu</au><au>Huang, Minghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strengthening mechanisms and dislocation processes in textured nanotwinned copper</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2016-10-01</date><risdate>2016</risdate><volume>676</volume><spage>474</spage><epage>486</epage><pages>474-486</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>We use molecular dynamics simulations to elucidate the deformation mechanisms of textured nanotwinned materials under tensile loading parallel to the twin boundary (TB). Our simulations reveal that the tensile strength of nanotwinned Cu increases monotonically as the twin spacing decreases. The strengthening effect mainly results from TB restricting the transmission of dislocations across the TB. Throughout the simulations the transmissions of dislocations across the TBs dominate the plastic deformation. Both direct and indirect transmissions are identified at atomic level. Direct transmission involves either successive transmission of the leading and trailing partials as in the Fleischer cross-slip model or absorption and desorption of the extended dislocation as in the Friedel-Escaig cross-slip mechanism. In contrast, indirect transmission involves the formation of special superjogs. The persistent slip transfer leaves zigzag slip traces on the cross-sectional view and the inhomogeneous deformation leads to the formation of intersecting slip bands on the plane view.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2016.08.127</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2016-10, Vol.676, p.474-486
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_1845829639
source Elsevier ScienceDirect Journals
subjects COMPUTER SIMULATION
Copper
Cross slip
Dislocation
Dislocations
Formations
MICROSTRUCTURES
Molecular dynamics
Nanostructure
Nanotwinned Cu
Simulation
Slip
Slip transmission
Strengthening
Strengthening mechanism
TENSILE STRENGTH
TWINNING MECHANISMS
title Strengthening mechanisms and dislocation processes in textured nanotwinned copper
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strengthening%20mechanisms%20and%20dislocation%20processes%20in%20textured%20nanotwinned%20copper&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Zhao,%20Xing&rft.date=2016-10-01&rft.volume=676&rft.spage=474&rft.epage=486&rft.pages=474-486&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2016.08.127&rft_dat=%3Cproquest_cross%3E1845829639%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845829639&rft_id=info:pmid/&rft_els_id=S0921509316310553&rfr_iscdi=true