Strengthening mechanisms and dislocation processes in textured nanotwinned copper
We use molecular dynamics simulations to elucidate the deformation mechanisms of textured nanotwinned materials under tensile loading parallel to the twin boundary (TB). Our simulations reveal that the tensile strength of nanotwinned Cu increases monotonically as the twin spacing decreases. The stre...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2016-10, Vol.676, p.474-486 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 486 |
---|---|
container_issue | |
container_start_page | 474 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 676 |
creator | Zhao, Xing Lu, Cheng Tieu, Anh Kiet Pei, Linqing Zhang, Liang Cheng, Kuiyu Huang, Minghui |
description | We use molecular dynamics simulations to elucidate the deformation mechanisms of textured nanotwinned materials under tensile loading parallel to the twin boundary (TB). Our simulations reveal that the tensile strength of nanotwinned Cu increases monotonically as the twin spacing decreases. The strengthening effect mainly results from TB restricting the transmission of dislocations across the TB. Throughout the simulations the transmissions of dislocations across the TBs dominate the plastic deformation. Both direct and indirect transmissions are identified at atomic level. Direct transmission involves either successive transmission of the leading and trailing partials as in the Fleischer cross-slip model or absorption and desorption of the extended dislocation as in the Friedel-Escaig cross-slip mechanism. In contrast, indirect transmission involves the formation of special superjogs. The persistent slip transfer leaves zigzag slip traces on the cross-sectional view and the inhomogeneous deformation leads to the formation of intersecting slip bands on the plane view. |
doi_str_mv | 10.1016/j.msea.2016.08.127 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845829639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509316310553</els_id><sourcerecordid>1845829639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-81f398e778526175f6c5bba5d140781d9d9aafa7b9e42666f3e480607ffd80a23</originalsourceid><addsrcrecordid>eNp9kMtOwzAURC0EEqXwA6yyZJNgx4kfEhtU8ZIqIQSsLde-bl0lTrBdHn9PqrJmdWcxM5p7ELokuCKYsOtt1SfQVT3pCouK1PwIzYjgtGwkZcdohmVNyhZLeorOUtpijEmD2xl6ec0RwjpvIPiwLnowGx186lOhgy2sT91gdPZDKMY4GEgJUuFDkeE77yLYIugw5C8fwqTNMI4Qz9GJ012Ci787R-_3d2-Lx3L5_PC0uF2WhpIml4I4KgVwLtqaEd46ZtrVSrd22sUFsdJKrZ3mKwlNzRhzFBqBGebOWYF1Tefo6tA7DfvYQcqq98lA1-kAwy4pIppW1JJROVnrg9XEIaUITo3R9zr-KILVnp_aqj0_teensFATvyl0cwjB9MSnh6iS8RAMWB_BZGUH_1_8F0cWeqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845829639</pqid></control><display><type>article</type><title>Strengthening mechanisms and dislocation processes in textured nanotwinned copper</title><source>Elsevier ScienceDirect Journals</source><creator>Zhao, Xing ; Lu, Cheng ; Tieu, Anh Kiet ; Pei, Linqing ; Zhang, Liang ; Cheng, Kuiyu ; Huang, Minghui</creator><creatorcontrib>Zhao, Xing ; Lu, Cheng ; Tieu, Anh Kiet ; Pei, Linqing ; Zhang, Liang ; Cheng, Kuiyu ; Huang, Minghui</creatorcontrib><description>We use molecular dynamics simulations to elucidate the deformation mechanisms of textured nanotwinned materials under tensile loading parallel to the twin boundary (TB). Our simulations reveal that the tensile strength of nanotwinned Cu increases monotonically as the twin spacing decreases. The strengthening effect mainly results from TB restricting the transmission of dislocations across the TB. Throughout the simulations the transmissions of dislocations across the TBs dominate the plastic deformation. Both direct and indirect transmissions are identified at atomic level. Direct transmission involves either successive transmission of the leading and trailing partials as in the Fleischer cross-slip model or absorption and desorption of the extended dislocation as in the Friedel-Escaig cross-slip mechanism. In contrast, indirect transmission involves the formation of special superjogs. The persistent slip transfer leaves zigzag slip traces on the cross-sectional view and the inhomogeneous deformation leads to the formation of intersecting slip bands on the plane view.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2016.08.127</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>COMPUTER SIMULATION ; Copper ; Cross slip ; Dislocation ; Dislocations ; Formations ; MICROSTRUCTURES ; Molecular dynamics ; Nanostructure ; Nanotwinned Cu ; Simulation ; Slip ; Slip transmission ; Strengthening ; Strengthening mechanism ; TENSILE STRENGTH ; TWINNING MECHANISMS</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2016-10, Vol.676, p.474-486</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-81f398e778526175f6c5bba5d140781d9d9aafa7b9e42666f3e480607ffd80a23</citedby><cites>FETCH-LOGICAL-c314t-81f398e778526175f6c5bba5d140781d9d9aafa7b9e42666f3e480607ffd80a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2016.08.127$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Zhao, Xing</creatorcontrib><creatorcontrib>Lu, Cheng</creatorcontrib><creatorcontrib>Tieu, Anh Kiet</creatorcontrib><creatorcontrib>Pei, Linqing</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Cheng, Kuiyu</creatorcontrib><creatorcontrib>Huang, Minghui</creatorcontrib><title>Strengthening mechanisms and dislocation processes in textured nanotwinned copper</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>We use molecular dynamics simulations to elucidate the deformation mechanisms of textured nanotwinned materials under tensile loading parallel to the twin boundary (TB). Our simulations reveal that the tensile strength of nanotwinned Cu increases monotonically as the twin spacing decreases. The strengthening effect mainly results from TB restricting the transmission of dislocations across the TB. Throughout the simulations the transmissions of dislocations across the TBs dominate the plastic deformation. Both direct and indirect transmissions are identified at atomic level. Direct transmission involves either successive transmission of the leading and trailing partials as in the Fleischer cross-slip model or absorption and desorption of the extended dislocation as in the Friedel-Escaig cross-slip mechanism. In contrast, indirect transmission involves the formation of special superjogs. The persistent slip transfer leaves zigzag slip traces on the cross-sectional view and the inhomogeneous deformation leads to the formation of intersecting slip bands on the plane view.</description><subject>COMPUTER SIMULATION</subject><subject>Copper</subject><subject>Cross slip</subject><subject>Dislocation</subject><subject>Dislocations</subject><subject>Formations</subject><subject>MICROSTRUCTURES</subject><subject>Molecular dynamics</subject><subject>Nanostructure</subject><subject>Nanotwinned Cu</subject><subject>Simulation</subject><subject>Slip</subject><subject>Slip transmission</subject><subject>Strengthening</subject><subject>Strengthening mechanism</subject><subject>TENSILE STRENGTH</subject><subject>TWINNING MECHANISMS</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAURC0EEqXwA6yyZJNgx4kfEhtU8ZIqIQSsLde-bl0lTrBdHn9PqrJmdWcxM5p7ELokuCKYsOtt1SfQVT3pCouK1PwIzYjgtGwkZcdohmVNyhZLeorOUtpijEmD2xl6ec0RwjpvIPiwLnowGx186lOhgy2sT91gdPZDKMY4GEgJUuFDkeE77yLYIugw5C8fwqTNMI4Qz9GJ012Ci787R-_3d2-Lx3L5_PC0uF2WhpIml4I4KgVwLtqaEd46ZtrVSrd22sUFsdJKrZ3mKwlNzRhzFBqBGebOWYF1Tefo6tA7DfvYQcqq98lA1-kAwy4pIppW1JJROVnrg9XEIaUITo3R9zr-KILVnp_aqj0_teensFATvyl0cwjB9MSnh6iS8RAMWB_BZGUH_1_8F0cWeqQ</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Zhao, Xing</creator><creator>Lu, Cheng</creator><creator>Tieu, Anh Kiet</creator><creator>Pei, Linqing</creator><creator>Zhang, Liang</creator><creator>Cheng, Kuiyu</creator><creator>Huang, Minghui</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20161001</creationdate><title>Strengthening mechanisms and dislocation processes in textured nanotwinned copper</title><author>Zhao, Xing ; Lu, Cheng ; Tieu, Anh Kiet ; Pei, Linqing ; Zhang, Liang ; Cheng, Kuiyu ; Huang, Minghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-81f398e778526175f6c5bba5d140781d9d9aafa7b9e42666f3e480607ffd80a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>COMPUTER SIMULATION</topic><topic>Copper</topic><topic>Cross slip</topic><topic>Dislocation</topic><topic>Dislocations</topic><topic>Formations</topic><topic>MICROSTRUCTURES</topic><topic>Molecular dynamics</topic><topic>Nanostructure</topic><topic>Nanotwinned Cu</topic><topic>Simulation</topic><topic>Slip</topic><topic>Slip transmission</topic><topic>Strengthening</topic><topic>Strengthening mechanism</topic><topic>TENSILE STRENGTH</topic><topic>TWINNING MECHANISMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xing</creatorcontrib><creatorcontrib>Lu, Cheng</creatorcontrib><creatorcontrib>Tieu, Anh Kiet</creatorcontrib><creatorcontrib>Pei, Linqing</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Cheng, Kuiyu</creatorcontrib><creatorcontrib>Huang, Minghui</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xing</au><au>Lu, Cheng</au><au>Tieu, Anh Kiet</au><au>Pei, Linqing</au><au>Zhang, Liang</au><au>Cheng, Kuiyu</au><au>Huang, Minghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strengthening mechanisms and dislocation processes in textured nanotwinned copper</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2016-10-01</date><risdate>2016</risdate><volume>676</volume><spage>474</spage><epage>486</epage><pages>474-486</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>We use molecular dynamics simulations to elucidate the deformation mechanisms of textured nanotwinned materials under tensile loading parallel to the twin boundary (TB). Our simulations reveal that the tensile strength of nanotwinned Cu increases monotonically as the twin spacing decreases. The strengthening effect mainly results from TB restricting the transmission of dislocations across the TB. Throughout the simulations the transmissions of dislocations across the TBs dominate the plastic deformation. Both direct and indirect transmissions are identified at atomic level. Direct transmission involves either successive transmission of the leading and trailing partials as in the Fleischer cross-slip model or absorption and desorption of the extended dislocation as in the Friedel-Escaig cross-slip mechanism. In contrast, indirect transmission involves the formation of special superjogs. The persistent slip transfer leaves zigzag slip traces on the cross-sectional view and the inhomogeneous deformation leads to the formation of intersecting slip bands on the plane view.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2016.08.127</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2016-10, Vol.676, p.474-486 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845829639 |
source | Elsevier ScienceDirect Journals |
subjects | COMPUTER SIMULATION Copper Cross slip Dislocation Dislocations Formations MICROSTRUCTURES Molecular dynamics Nanostructure Nanotwinned Cu Simulation Slip Slip transmission Strengthening Strengthening mechanism TENSILE STRENGTH TWINNING MECHANISMS |
title | Strengthening mechanisms and dislocation processes in textured nanotwinned copper |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strengthening%20mechanisms%20and%20dislocation%20processes%20in%20textured%20nanotwinned%20copper&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Zhao,%20Xing&rft.date=2016-10-01&rft.volume=676&rft.spage=474&rft.epage=486&rft.pages=474-486&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2016.08.127&rft_dat=%3Cproquest_cross%3E1845829639%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845829639&rft_id=info:pmid/&rft_els_id=S0921509316310553&rfr_iscdi=true |