Fragility Analysis of Base-Isolated Liquid Storage Tanks under Random Sinusoidal Base Excitation Using Generalized Polynomial Chaos Expansion–Based Simulation

AbstractGeneralized polynomial chaos (gPC) expansion–based simulation technique is used to investigate the influence of input parameter uncertainty, on peak response quantities and fragility curves of base-isolated liquid storage tanks. Unidirectional horizontal sinusoidal base excitation is conside...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural engineering (New York, N.Y.) N.Y.), 2016-10, Vol.142 (10)
Hauptverfasser: Saha, Sandip Kumar, Sepahvand, Kheirollah, Matsagar, Vasant A, Jain, Arvind K, Marburg, Steffen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Journal of structural engineering (New York, N.Y.)
container_volume 142
creator Saha, Sandip Kumar
Sepahvand, Kheirollah
Matsagar, Vasant A
Jain, Arvind K
Marburg, Steffen
description AbstractGeneralized polynomial chaos (gPC) expansion–based simulation technique is used to investigate the influence of input parameter uncertainty, on peak response quantities and fragility curves of base-isolated liquid storage tanks. Unidirectional horizontal sinusoidal base excitation is considered to develop the fragility curves for the base-isolated liquid storage tanks. Extensively used laminated rubber bearing (LRB), with linear force-deformation behavior, is considered as the isolation system. The liquid storage tank is modeled using a widely accepted lumped mass model. The failure of the liquid storage tank is defined corresponding to the elastic buckling of the tank wall. The uncertainties are considered in the isolator parameters and in the base excitation. Considerable difference in the peak response estimation is observed when the input parameters are represented using different probability distributions, especially when the uncertainties are higher. It is also observed that when the uncertainties in the input parameters increase, probability of failure at given amplitude of the excitation increases. It is demonstrated that the probability of failure estimated using gPC expansion–based simulations closely matches the same obtained through the direct Monte Carlo (MC) simulations. Significant influence of the time period of the isolation system is observed on the fragility curves of the base-isolated liquid storage tanks. However, isolation damping has a marginal effect on the fragility curves of the base-isolated liquid storage tanks.
doi_str_mv 10.1061/(ASCE)ST.1943-541X.0001518
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845829187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845829187</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-65b11d1c658284474fd561de175a06b3b594881340a3f0758327ae3f9a2799623</originalsourceid><addsrcrecordid>eNp1kc1OGzEURq2KSg2072CxootJ7bHnj10aBYoUCcQEqTvrJuMBg8cOvjMSYcU79AX6bH2Seghix8rS1Tnfle9HyDFnU85y_uNkVs8X3-vVlFdSJJnkv6eMMZ7x8hOZvM8OyIQVQiSVlNkXcoh4H6EiQhPy9yzArbGm39GZA7tDg9S39CegTi7QW-h1Q5fmcTANrXsfYU1X4B6QDq7RgV6Da3xHa-MG9KYB-6rSxdPG9NAb7-gNGndLz7XTAax5jnFX3u6c70yE53fgMdJbcBjhfy9_Rj2uMt1gX_2v5HMLFvW3t_eI3JwtVvNfyfLy_GI-WyYgZNonebbmvOGbPCvTUspCtk2W80bzIgOWr8U6q2RZciEZiDb-vRRpAVq0FaRFVeWpOCIn-9xt8I-Dxl51BjfaWnDaD6h4KWN0xcsioqd7dBM8YtCt2gbTQdgpztRYi1JjLapeqbECNVag3mqJcr6XIaarez-EeHZ8Nz8W_wNGcJUE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845829187</pqid></control><display><type>article</type><title>Fragility Analysis of Base-Isolated Liquid Storage Tanks under Random Sinusoidal Base Excitation Using Generalized Polynomial Chaos Expansion–Based Simulation</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Saha, Sandip Kumar ; Sepahvand, Kheirollah ; Matsagar, Vasant A ; Jain, Arvind K ; Marburg, Steffen</creator><creatorcontrib>Saha, Sandip Kumar ; Sepahvand, Kheirollah ; Matsagar, Vasant A ; Jain, Arvind K ; Marburg, Steffen</creatorcontrib><description>AbstractGeneralized polynomial chaos (gPC) expansion–based simulation technique is used to investigate the influence of input parameter uncertainty, on peak response quantities and fragility curves of base-isolated liquid storage tanks. Unidirectional horizontal sinusoidal base excitation is considered to develop the fragility curves for the base-isolated liquid storage tanks. Extensively used laminated rubber bearing (LRB), with linear force-deformation behavior, is considered as the isolation system. The liquid storage tank is modeled using a widely accepted lumped mass model. The failure of the liquid storage tank is defined corresponding to the elastic buckling of the tank wall. The uncertainties are considered in the isolator parameters and in the base excitation. Considerable difference in the peak response estimation is observed when the input parameters are represented using different probability distributions, especially when the uncertainties are higher. It is also observed that when the uncertainties in the input parameters increase, probability of failure at given amplitude of the excitation increases. It is demonstrated that the probability of failure estimated using gPC expansion–based simulations closely matches the same obtained through the direct Monte Carlo (MC) simulations. Significant influence of the time period of the isolation system is observed on the fragility curves of the base-isolated liquid storage tanks. However, isolation damping has a marginal effect on the fragility curves of the base-isolated liquid storage tanks.</description><identifier>ISSN: 0733-9445</identifier><identifier>EISSN: 1943-541X</identifier><identifier>DOI: 10.1061/(ASCE)ST.1943-541X.0001518</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>Computer simulation ; Excitation ; Fragility ; Liquids ; Mathematical models ; Parameters ; Storage tanks ; Technical Papers ; Uncertainty</subject><ispartof>Journal of structural engineering (New York, N.Y.), 2016-10, Vol.142 (10)</ispartof><rights>2016 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-65b11d1c658284474fd561de175a06b3b594881340a3f0758327ae3f9a2799623</citedby><cites>FETCH-LOGICAL-a342t-65b11d1c658284474fd561de175a06b3b594881340a3f0758327ae3f9a2799623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)ST.1943-541X.0001518$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)ST.1943-541X.0001518$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,75939,75947</link.rule.ids></links><search><creatorcontrib>Saha, Sandip Kumar</creatorcontrib><creatorcontrib>Sepahvand, Kheirollah</creatorcontrib><creatorcontrib>Matsagar, Vasant A</creatorcontrib><creatorcontrib>Jain, Arvind K</creatorcontrib><creatorcontrib>Marburg, Steffen</creatorcontrib><title>Fragility Analysis of Base-Isolated Liquid Storage Tanks under Random Sinusoidal Base Excitation Using Generalized Polynomial Chaos Expansion–Based Simulation</title><title>Journal of structural engineering (New York, N.Y.)</title><description>AbstractGeneralized polynomial chaos (gPC) expansion–based simulation technique is used to investigate the influence of input parameter uncertainty, on peak response quantities and fragility curves of base-isolated liquid storage tanks. Unidirectional horizontal sinusoidal base excitation is considered to develop the fragility curves for the base-isolated liquid storage tanks. Extensively used laminated rubber bearing (LRB), with linear force-deformation behavior, is considered as the isolation system. The liquid storage tank is modeled using a widely accepted lumped mass model. The failure of the liquid storage tank is defined corresponding to the elastic buckling of the tank wall. The uncertainties are considered in the isolator parameters and in the base excitation. Considerable difference in the peak response estimation is observed when the input parameters are represented using different probability distributions, especially when the uncertainties are higher. It is also observed that when the uncertainties in the input parameters increase, probability of failure at given amplitude of the excitation increases. It is demonstrated that the probability of failure estimated using gPC expansion–based simulations closely matches the same obtained through the direct Monte Carlo (MC) simulations. Significant influence of the time period of the isolation system is observed on the fragility curves of the base-isolated liquid storage tanks. However, isolation damping has a marginal effect on the fragility curves of the base-isolated liquid storage tanks.</description><subject>Computer simulation</subject><subject>Excitation</subject><subject>Fragility</subject><subject>Liquids</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Storage tanks</subject><subject>Technical Papers</subject><subject>Uncertainty</subject><issn>0733-9445</issn><issn>1943-541X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kc1OGzEURq2KSg2072CxootJ7bHnj10aBYoUCcQEqTvrJuMBg8cOvjMSYcU79AX6bH2Seghix8rS1Tnfle9HyDFnU85y_uNkVs8X3-vVlFdSJJnkv6eMMZ7x8hOZvM8OyIQVQiSVlNkXcoh4H6EiQhPy9yzArbGm39GZA7tDg9S39CegTi7QW-h1Q5fmcTANrXsfYU1X4B6QDq7RgV6Da3xHa-MG9KYB-6rSxdPG9NAb7-gNGndLz7XTAax5jnFX3u6c70yE53fgMdJbcBjhfy9_Rj2uMt1gX_2v5HMLFvW3t_eI3JwtVvNfyfLy_GI-WyYgZNonebbmvOGbPCvTUspCtk2W80bzIgOWr8U6q2RZciEZiDb-vRRpAVq0FaRFVeWpOCIn-9xt8I-Dxl51BjfaWnDaD6h4KWN0xcsioqd7dBM8YtCt2gbTQdgpztRYi1JjLapeqbECNVag3mqJcr6XIaarez-EeHZ8Nz8W_wNGcJUE</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Saha, Sandip Kumar</creator><creator>Sepahvand, Kheirollah</creator><creator>Matsagar, Vasant A</creator><creator>Jain, Arvind K</creator><creator>Marburg, Steffen</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20161001</creationdate><title>Fragility Analysis of Base-Isolated Liquid Storage Tanks under Random Sinusoidal Base Excitation Using Generalized Polynomial Chaos Expansion–Based Simulation</title><author>Saha, Sandip Kumar ; Sepahvand, Kheirollah ; Matsagar, Vasant A ; Jain, Arvind K ; Marburg, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-65b11d1c658284474fd561de175a06b3b594881340a3f0758327ae3f9a2799623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer simulation</topic><topic>Excitation</topic><topic>Fragility</topic><topic>Liquids</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Storage tanks</topic><topic>Technical Papers</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saha, Sandip Kumar</creatorcontrib><creatorcontrib>Sepahvand, Kheirollah</creatorcontrib><creatorcontrib>Matsagar, Vasant A</creatorcontrib><creatorcontrib>Jain, Arvind K</creatorcontrib><creatorcontrib>Marburg, Steffen</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saha, Sandip Kumar</au><au>Sepahvand, Kheirollah</au><au>Matsagar, Vasant A</au><au>Jain, Arvind K</au><au>Marburg, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fragility Analysis of Base-Isolated Liquid Storage Tanks under Random Sinusoidal Base Excitation Using Generalized Polynomial Chaos Expansion–Based Simulation</atitle><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle><date>2016-10-01</date><risdate>2016</risdate><volume>142</volume><issue>10</issue><issn>0733-9445</issn><eissn>1943-541X</eissn><abstract>AbstractGeneralized polynomial chaos (gPC) expansion–based simulation technique is used to investigate the influence of input parameter uncertainty, on peak response quantities and fragility curves of base-isolated liquid storage tanks. Unidirectional horizontal sinusoidal base excitation is considered to develop the fragility curves for the base-isolated liquid storage tanks. Extensively used laminated rubber bearing (LRB), with linear force-deformation behavior, is considered as the isolation system. The liquid storage tank is modeled using a widely accepted lumped mass model. The failure of the liquid storage tank is defined corresponding to the elastic buckling of the tank wall. The uncertainties are considered in the isolator parameters and in the base excitation. Considerable difference in the peak response estimation is observed when the input parameters are represented using different probability distributions, especially when the uncertainties are higher. It is also observed that when the uncertainties in the input parameters increase, probability of failure at given amplitude of the excitation increases. It is demonstrated that the probability of failure estimated using gPC expansion–based simulations closely matches the same obtained through the direct Monte Carlo (MC) simulations. Significant influence of the time period of the isolation system is observed on the fragility curves of the base-isolated liquid storage tanks. However, isolation damping has a marginal effect on the fragility curves of the base-isolated liquid storage tanks.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)ST.1943-541X.0001518</doi></addata></record>
fulltext fulltext
identifier ISSN: 0733-9445
ispartof Journal of structural engineering (New York, N.Y.), 2016-10, Vol.142 (10)
issn 0733-9445
1943-541X
language eng
recordid cdi_proquest_miscellaneous_1845829187
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Computer simulation
Excitation
Fragility
Liquids
Mathematical models
Parameters
Storage tanks
Technical Papers
Uncertainty
title Fragility Analysis of Base-Isolated Liquid Storage Tanks under Random Sinusoidal Base Excitation Using Generalized Polynomial Chaos Expansion–Based Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fragility%20Analysis%20of%20Base-Isolated%20Liquid%20Storage%20Tanks%20under%20Random%20Sinusoidal%20Base%20Excitation%20Using%20Generalized%20Polynomial%20Chaos%20Expansion%E2%80%93Based%20Simulation&rft.jtitle=Journal%20of%20structural%20engineering%20(New%20York,%20N.Y.)&rft.au=Saha,%20Sandip%20Kumar&rft.date=2016-10-01&rft.volume=142&rft.issue=10&rft.issn=0733-9445&rft.eissn=1943-541X&rft_id=info:doi/10.1061/(ASCE)ST.1943-541X.0001518&rft_dat=%3Cproquest_cross%3E1845829187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845829187&rft_id=info:pmid/&rfr_iscdi=true