Combining discrete and continuous optimization to solve kinodynamic motion planning problems
A new approach to find the fastest trajectory of a robot avoiding obstacles, is presented. This optimal trajectory is the solution of an optimal control problem with kinematic and dynamic constraints. The approach involves a direct method based on the time discretization of the control variable. We...
Gespeichert in:
Veröffentlicht in: | Optimization and engineering 2016-09, Vol.17 (3), p.533-556 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 556 |
---|---|
container_issue | 3 |
container_start_page | 533 |
container_title | Optimization and engineering |
container_volume | 17 |
creator | Landry, Chantal Welz, Wolfgang Gerdts, Matthias |
description | A new approach to find the fastest trajectory of a robot avoiding obstacles, is presented. This optimal trajectory is the solution of an optimal control problem with kinematic and dynamic constraints. The approach involves a direct method based on the time discretization of the control variable. We mainly focus on the computation of a good initial trajectory. Our method combines discrete and continuous optimization concepts. First, a graph search algorithm is used to determine a list of intermediate points. Then, an optimal control problem of small size is defined to find the fastest trajectory that passes through the vicinity of the intermediate points. The resulting solution is the initial trajectory. Our approach is applied to a single body mobile robot. The numerical results show the quality of the initial trajectory and its low computational cost. |
doi_str_mv | 10.1007/s11081-015-9291-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845828993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845828993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-cfb9a9e87649e49bfd24b7da0773f498bd18d6b34cc2accc314c98c4f029d7f63</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8FL16q-WqTHGXxCxa86E0IaZIuWdukJq2gv97sVhAETzMwz_vOzAvAOYJXCEJ2nRCCHJUQVaXAIjcHYIEqRkosMD3MPeGipBTDY3CS0hZCVFeYL8DrKvSN885vCuOSjna0hfKm0MGPzk9hSkUYRte7LzW64IsxFCl0H7Z4cz6YT696p4s-7GdDp_zeaYih6WyfTsFRq7pkz37qErzc3T6vHsr10_3j6mZdagLRWOq2EUpYzmoqLBVNazBtmFGQMdJSwRuDuKkbQrXGSmtNENWCa9pCLAxra7IEl7NvXvw-2TTKPv9iu3yPzR9IxGnFMReCZPTiD7oNU_T5OolhTRgTDMFMoZnSMaQUbSuH6HoVPyWCcpe3nPOWOW-5y1vuNHjWpMz6jY2_zv-LvgEsIITD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063779710</pqid></control><display><type>article</type><title>Combining discrete and continuous optimization to solve kinodynamic motion planning problems</title><source>Springer Online Journals Complete</source><creator>Landry, Chantal ; Welz, Wolfgang ; Gerdts, Matthias</creator><creatorcontrib>Landry, Chantal ; Welz, Wolfgang ; Gerdts, Matthias</creatorcontrib><description>A new approach to find the fastest trajectory of a robot avoiding obstacles, is presented. This optimal trajectory is the solution of an optimal control problem with kinematic and dynamic constraints. The approach involves a direct method based on the time discretization of the control variable. We mainly focus on the computation of a good initial trajectory. Our method combines discrete and continuous optimization concepts. First, a graph search algorithm is used to determine a list of intermediate points. Then, an optimal control problem of small size is defined to find the fastest trajectory that passes through the vicinity of the intermediate points. The resulting solution is the initial trajectory. Our approach is applied to a single body mobile robot. The numerical results show the quality of the initial trajectory and its low computational cost.</description><identifier>ISSN: 1389-4420</identifier><identifier>EISSN: 1573-2924</identifier><identifier>DOI: 10.1007/s11081-015-9291-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computational efficiency ; Control ; Discretization ; Engineering ; Environmental Management ; Financial Engineering ; Kinematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Motion planning ; Operations Research/Decision Theory ; Optimal control ; Optimization ; Robots ; Search algorithms ; Systems Theory ; Trajectories</subject><ispartof>Optimization and engineering, 2016-09, Vol.17 (3), p.533-556</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-cfb9a9e87649e49bfd24b7da0773f498bd18d6b34cc2accc314c98c4f029d7f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11081-015-9291-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11081-015-9291-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Landry, Chantal</creatorcontrib><creatorcontrib>Welz, Wolfgang</creatorcontrib><creatorcontrib>Gerdts, Matthias</creatorcontrib><title>Combining discrete and continuous optimization to solve kinodynamic motion planning problems</title><title>Optimization and engineering</title><addtitle>Optim Eng</addtitle><description>A new approach to find the fastest trajectory of a robot avoiding obstacles, is presented. This optimal trajectory is the solution of an optimal control problem with kinematic and dynamic constraints. The approach involves a direct method based on the time discretization of the control variable. We mainly focus on the computation of a good initial trajectory. Our method combines discrete and continuous optimization concepts. First, a graph search algorithm is used to determine a list of intermediate points. Then, an optimal control problem of small size is defined to find the fastest trajectory that passes through the vicinity of the intermediate points. The resulting solution is the initial trajectory. Our approach is applied to a single body mobile robot. The numerical results show the quality of the initial trajectory and its low computational cost.</description><subject>Computational efficiency</subject><subject>Control</subject><subject>Discretization</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Financial Engineering</subject><subject>Kinematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Motion planning</subject><subject>Operations Research/Decision Theory</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Robots</subject><subject>Search algorithms</subject><subject>Systems Theory</subject><subject>Trajectories</subject><issn>1389-4420</issn><issn>1573-2924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8FL16q-WqTHGXxCxa86E0IaZIuWdukJq2gv97sVhAETzMwz_vOzAvAOYJXCEJ2nRCCHJUQVaXAIjcHYIEqRkosMD3MPeGipBTDY3CS0hZCVFeYL8DrKvSN885vCuOSjna0hfKm0MGPzk9hSkUYRte7LzW64IsxFCl0H7Z4cz6YT696p4s-7GdDp_zeaYih6WyfTsFRq7pkz37qErzc3T6vHsr10_3j6mZdagLRWOq2EUpYzmoqLBVNazBtmFGQMdJSwRuDuKkbQrXGSmtNENWCa9pCLAxra7IEl7NvXvw-2TTKPv9iu3yPzR9IxGnFMReCZPTiD7oNU_T5OolhTRgTDMFMoZnSMaQUbSuH6HoVPyWCcpe3nPOWOW-5y1vuNHjWpMz6jY2_zv-LvgEsIITD</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Landry, Chantal</creator><creator>Welz, Wolfgang</creator><creator>Gerdts, Matthias</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20160901</creationdate><title>Combining discrete and continuous optimization to solve kinodynamic motion planning problems</title><author>Landry, Chantal ; Welz, Wolfgang ; Gerdts, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-cfb9a9e87649e49bfd24b7da0773f498bd18d6b34cc2accc314c98c4f029d7f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational efficiency</topic><topic>Control</topic><topic>Discretization</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Financial Engineering</topic><topic>Kinematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Motion planning</topic><topic>Operations Research/Decision Theory</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Robots</topic><topic>Search algorithms</topic><topic>Systems Theory</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Landry, Chantal</creatorcontrib><creatorcontrib>Welz, Wolfgang</creatorcontrib><creatorcontrib>Gerdts, Matthias</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Optimization and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Landry, Chantal</au><au>Welz, Wolfgang</au><au>Gerdts, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining discrete and continuous optimization to solve kinodynamic motion planning problems</atitle><jtitle>Optimization and engineering</jtitle><stitle>Optim Eng</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>17</volume><issue>3</issue><spage>533</spage><epage>556</epage><pages>533-556</pages><issn>1389-4420</issn><eissn>1573-2924</eissn><abstract>A new approach to find the fastest trajectory of a robot avoiding obstacles, is presented. This optimal trajectory is the solution of an optimal control problem with kinematic and dynamic constraints. The approach involves a direct method based on the time discretization of the control variable. We mainly focus on the computation of a good initial trajectory. Our method combines discrete and continuous optimization concepts. First, a graph search algorithm is used to determine a list of intermediate points. Then, an optimal control problem of small size is defined to find the fastest trajectory that passes through the vicinity of the intermediate points. The resulting solution is the initial trajectory. Our approach is applied to a single body mobile robot. The numerical results show the quality of the initial trajectory and its low computational cost.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11081-015-9291-0</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-4420 |
ispartof | Optimization and engineering, 2016-09, Vol.17 (3), p.533-556 |
issn | 1389-4420 1573-2924 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845828993 |
source | Springer Online Journals Complete |
subjects | Computational efficiency Control Discretization Engineering Environmental Management Financial Engineering Kinematics Mathematical models Mathematics Mathematics and Statistics Motion planning Operations Research/Decision Theory Optimal control Optimization Robots Search algorithms Systems Theory Trajectories |
title | Combining discrete and continuous optimization to solve kinodynamic motion planning problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A26%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20discrete%20and%20continuous%20optimization%20to%20solve%20kinodynamic%20motion%20planning%20problems&rft.jtitle=Optimization%20and%20engineering&rft.au=Landry,%20Chantal&rft.date=2016-09-01&rft.volume=17&rft.issue=3&rft.spage=533&rft.epage=556&rft.pages=533-556&rft.issn=1389-4420&rft.eissn=1573-2924&rft_id=info:doi/10.1007/s11081-015-9291-0&rft_dat=%3Cproquest_cross%3E1845828993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063779710&rft_id=info:pmid/&rfr_iscdi=true |