CENTER MANIFOLDS FOR PARTIALLY HYPERBOLIC SETS WITHOUT STRONG UNSTABLE CONNECTIONS
We consider compact sets which are invariant and partially hyperbolic under the dynamics of a diffeomorphism of a manifold. We prove that such a set $K$ is contained in a locally invariant center submanifold if and only if each strong stable and strong unstable leaf intersects $K$ at exactly one poi...
Gespeichert in:
Veröffentlicht in: | Journal of the Institute of Mathematics of Jussieu 2016-10, Vol.15 (4), p.785-828 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider compact sets which are invariant and partially hyperbolic under the dynamics of a diffeomorphism of a manifold. We prove that such a set
$K$
is contained in a locally invariant center submanifold if and only if each strong stable and strong unstable leaf intersects
$K$
at exactly one point. |
---|---|
ISSN: | 1474-7480 1475-3030 |
DOI: | 10.1017/S1474748015000055 |