Sharp estimates for the modulus of a canonical product

A well-known bound for a Weierstrass primary factor is significantly improved. New estimates for the modulus of a canonical product are obtained on this basis, which are sharp in fairly broad classes of entire functions. Bibliography: 2 titles.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2016-01, Vol.207 (2), p.238-266
1. Verfasser: Merzlyakov, S. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 266
container_issue 2
container_start_page 238
container_title Sbornik. Mathematics
container_volume 207
creator Merzlyakov, S. G.
description A well-known bound for a Weierstrass primary factor is significantly improved. New estimates for the modulus of a canonical product are obtained on this basis, which are sharp in fairly broad classes of entire functions. Bibliography: 2 titles.
doi_str_mv 10.1070/SM8365
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845825755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845825755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-655d8cc52ef8fdb474af910a42f2114b704b5806893ac3127b7de05634814bd3</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EEqXAN1hIIDaB8TPuEipeUisW7d5yHFtNlcbBThb8fY3CDlYzmjnzuBehawIPBEp43KwVk-IEzQiXquAK6GnOQfJCSCLP0UVKewAQlKgZkpudiT12aWgOZnAJ-xDxsHP4EOqxHRMOHhtsTRe6xpoW9zHX7XCJzrxpk7v6jXO0fX3ZLt-L1efbx_JpVVhG2FBIIWplraDOK19XvOTGLwgYTj0lhFcl8EookGrBTJ6gZVXWDoRkXOVuzeboflqbz36N-Ul9aJJ1bWs6F8akieJCUVEKkdG7CbUxpBSd133MkuK3JqB_fNGTLxm8mcAm9HofxthlAX-h23-g9eZZUyg11ZQp3deeHQFWQWpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845825755</pqid></control><display><type>article</type><title>Sharp estimates for the modulus of a canonical product</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Merzlyakov, S. G.</creator><creatorcontrib>Merzlyakov, S. G.</creatorcontrib><description>A well-known bound for a Weierstrass primary factor is significantly improved. New estimates for the modulus of a canonical product are obtained on this basis, which are sharp in fairly broad classes of entire functions. Bibliography: 2 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM8365</identifier><language>eng</language><publisher>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>canonical product ; Entire functions ; Estimates ; Mathematical analysis ; Weierstrass primary factor</subject><ispartof>Sbornik. Mathematics, 2016-01, Vol.207 (2), p.238-266</ispartof><rights>2016 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-655d8cc52ef8fdb474af910a42f2114b704b5806893ac3127b7de05634814bd3</citedby><cites>FETCH-LOGICAL-c313t-655d8cc52ef8fdb474af910a42f2114b704b5806893ac3127b7de05634814bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM8365/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824</link.rule.ids></links><search><creatorcontrib>Merzlyakov, S. G.</creatorcontrib><title>Sharp estimates for the modulus of a canonical product</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>A well-known bound for a Weierstrass primary factor is significantly improved. New estimates for the modulus of a canonical product are obtained on this basis, which are sharp in fairly broad classes of entire functions. Bibliography: 2 titles.</description><subject>canonical product</subject><subject>Entire functions</subject><subject>Estimates</subject><subject>Mathematical analysis</subject><subject>Weierstrass primary factor</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNptkMtOwzAQRS0EEqXAN1hIIDaB8TPuEipeUisW7d5yHFtNlcbBThb8fY3CDlYzmjnzuBehawIPBEp43KwVk-IEzQiXquAK6GnOQfJCSCLP0UVKewAQlKgZkpudiT12aWgOZnAJ-xDxsHP4EOqxHRMOHhtsTRe6xpoW9zHX7XCJzrxpk7v6jXO0fX3ZLt-L1efbx_JpVVhG2FBIIWplraDOK19XvOTGLwgYTj0lhFcl8EookGrBTJ6gZVXWDoRkXOVuzeboflqbz36N-Ul9aJJ1bWs6F8akieJCUVEKkdG7CbUxpBSd133MkuK3JqB_fNGTLxm8mcAm9HofxthlAX-h23-g9eZZUyg11ZQp3deeHQFWQWpU</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Merzlyakov, S. G.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Sharp estimates for the modulus of a canonical product</title><author>Merzlyakov, S. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-655d8cc52ef8fdb474af910a42f2114b704b5806893ac3127b7de05634814bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>canonical product</topic><topic>Entire functions</topic><topic>Estimates</topic><topic>Mathematical analysis</topic><topic>Weierstrass primary factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merzlyakov, S. G.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merzlyakov, S. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp estimates for the modulus of a canonical product</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>207</volume><issue>2</issue><spage>238</spage><epage>266</epage><pages>238-266</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>A well-known bound for a Weierstrass primary factor is significantly improved. New estimates for the modulus of a canonical product are obtained on this basis, which are sharp in fairly broad classes of entire functions. Bibliography: 2 titles.</abstract><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM8365</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5616
ispartof Sbornik. Mathematics, 2016-01, Vol.207 (2), p.238-266
issn 1064-5616
1468-4802
language eng
recordid cdi_proquest_miscellaneous_1845825755
source IOP Publishing Journals; Alma/SFX Local Collection
subjects canonical product
Entire functions
Estimates
Mathematical analysis
Weierstrass primary factor
title Sharp estimates for the modulus of a canonical product
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20estimates%20for%20the%20modulus%20of%20a%20canonical%20product&rft.jtitle=Sbornik.%20Mathematics&rft.au=Merzlyakov,%20S.%20G.&rft.date=2016-01-01&rft.volume=207&rft.issue=2&rft.spage=238&rft.epage=266&rft.pages=238-266&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM8365&rft_dat=%3Cproquest_iop_j%3E1845825755%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845825755&rft_id=info:pmid/&rfr_iscdi=true