Revision and recalibration of existing shock classifications for quartzose rocks using low-shock pressure (2.5-20 GPa) recovery experiments and mesoscale numerical modeling

A combination of shock recovery experiments and numerical modeling of shock deformation in the low‐shock pressure range from 2.5 to 20 GPa for two dry sandstone types of different porosity, a completely water‐saturated sandstone, and a well‐indurated quartzite provides new insights into strongly het...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meteoritics & planetary science 2016-10, Vol.51 (10), p.1741-1761
Hauptverfasser: Kowitz, Astrid, Güldemeister, Nicole, Schmitt, Ralf Thomas, Reimold, Wolf-Uwe, Wünnemann, Kai, Holzwarth, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1761
container_issue 10
container_start_page 1741
container_title Meteoritics & planetary science
container_volume 51
creator Kowitz, Astrid
Güldemeister, Nicole
Schmitt, Ralf Thomas
Reimold, Wolf-Uwe
Wünnemann, Kai
Holzwarth, Andreas
description A combination of shock recovery experiments and numerical modeling of shock deformation in the low‐shock pressure range from 2.5 to 20 GPa for two dry sandstone types of different porosity, a completely water‐saturated sandstone, and a well‐indurated quartzite provides new insights into strongly heterogeneous distribution of different shock features. (1) For nonporous quartzo‐feldspathic rocks, the traditional classification scheme (Stöffler ) is suitable with slight changes in pressure calibration. (2) For water‐saturated quartzose rocks, a cataclastic texture (microbreccia) seems to be typical for the shock pressure range up to 20 GPa. This microbreccia does not show formation of PDFs but diaplectic quartz glass/SiO2 melt is formed at 20 GPa (~1 vol%). (3) For porous quartzose rocks, the following sequence of shock features is observed with progressive increase in shock pressure (1) crushing of pores, (2) intense fracturing of quartz grains, and (3) increasing formation of diaplectic quartz glass/SiO2 melt replacing fracturing. The formation of diaplectic quartz glass/SiO2 melt, together with SiO2 high‐pressure phases, is a continuous process that strongly depends on porosity. This experimental observation is confirmed by our concomitant numerical modeling. Recalibration of the shock classification scheme results in a porosity versus shock pressure diagram illustrating distinct boundaries for the different shock stages.
doi_str_mv 10.1111/maps.12712
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845821281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4204472481</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5302-46cd3c0bd60769d30b6300aef2989e0d90074c296505391c5298ba563bf598303</originalsourceid><addsrcrecordid>eNqNkc1u1DAQxyMEEqVw4QkscSlIWcZ2nMTHqioLUoHl-2g5yQTcJnHq2bRdnoYX4CV4MpwNcOCA8MWj8e8_H_4nyUMOKx7P096OtOKi4OJWcsB1plLFAW7HGMo81bLQd5N7ROcAUnGZHSTf3-KVI-cHZoeGBaxt56pgt3PGtwxvHG3d8JnRF19fsLqzRK519R4g1vrALicbtl89IQsRITbRzHf-Ol00Y0CiKSA7EiuVCvjxbb2xj-dW_grDLrYYMbgehy3tZ-iRPMUxkA1TH19iyHrfYBfL3k_utLYjfPDrPkw-PDt9f_I8PXu9fnFyfJZaJUGkWV43soaqyaHIdSOhyiWAxVboUiM0GqDIaqFzBUpqXquYr6zKZdUqXUqQh8nRUncM_nJC2preUY1dZwf0ExleZqoUXJT8P1BRaMFLnUX00V_ouZ_CEBeZqRwEyLKI1JOFqoMnCtiaMX6PDTvDwcwmm9lkszc5wnyBr12Hu3-Q5uXx5t1vTbpoorV480djw4XJC1ko8-nV2mwKvf6o8zemlD8BS-u66Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826020387</pqid></control><display><type>article</type><title>Revision and recalibration of existing shock classifications for quartzose rocks using low-shock pressure (2.5-20 GPa) recovery experiments and mesoscale numerical modeling</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kowitz, Astrid ; Güldemeister, Nicole ; Schmitt, Ralf Thomas ; Reimold, Wolf-Uwe ; Wünnemann, Kai ; Holzwarth, Andreas</creator><creatorcontrib>Kowitz, Astrid ; Güldemeister, Nicole ; Schmitt, Ralf Thomas ; Reimold, Wolf-Uwe ; Wünnemann, Kai ; Holzwarth, Andreas</creatorcontrib><description>A combination of shock recovery experiments and numerical modeling of shock deformation in the low‐shock pressure range from 2.5 to 20 GPa for two dry sandstone types of different porosity, a completely water‐saturated sandstone, and a well‐indurated quartzite provides new insights into strongly heterogeneous distribution of different shock features. (1) For nonporous quartzo‐feldspathic rocks, the traditional classification scheme (Stöffler ) is suitable with slight changes in pressure calibration. (2) For water‐saturated quartzose rocks, a cataclastic texture (microbreccia) seems to be typical for the shock pressure range up to 20 GPa. This microbreccia does not show formation of PDFs but diaplectic quartz glass/SiO2 melt is formed at 20 GPa (~1 vol%). (3) For porous quartzose rocks, the following sequence of shock features is observed with progressive increase in shock pressure (1) crushing of pores, (2) intense fracturing of quartz grains, and (3) increasing formation of diaplectic quartz glass/SiO2 melt replacing fracturing. The formation of diaplectic quartz glass/SiO2 melt, together with SiO2 high‐pressure phases, is a continuous process that strongly depends on porosity. This experimental observation is confirmed by our concomitant numerical modeling. Recalibration of the shock classification scheme results in a porosity versus shock pressure diagram illustrating distinct boundaries for the different shock stages.</description><identifier>ISSN: 1086-9379</identifier><identifier>EISSN: 1945-5100</identifier><identifier>DOI: 10.1111/maps.12712</identifier><identifier>CODEN: MPSCFY</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Classifications ; Mathematical models ; Melts ; Porosity ; Rocks ; Silica glass ; Silicon dioxide ; Texture</subject><ispartof>Meteoritics &amp; planetary science, 2016-10, Vol.51 (10), p.1741-1761</ispartof><rights>The Meteoritical Society, 2016.</rights><rights>Copyright © 2016 The Meteoritical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5302-46cd3c0bd60769d30b6300aef2989e0d90074c296505391c5298ba563bf598303</citedby><cites>FETCH-LOGICAL-a5302-46cd3c0bd60769d30b6300aef2989e0d90074c296505391c5298ba563bf598303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmaps.12712$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmaps.12712$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Kowitz, Astrid</creatorcontrib><creatorcontrib>Güldemeister, Nicole</creatorcontrib><creatorcontrib>Schmitt, Ralf Thomas</creatorcontrib><creatorcontrib>Reimold, Wolf-Uwe</creatorcontrib><creatorcontrib>Wünnemann, Kai</creatorcontrib><creatorcontrib>Holzwarth, Andreas</creatorcontrib><title>Revision and recalibration of existing shock classifications for quartzose rocks using low-shock pressure (2.5-20 GPa) recovery experiments and mesoscale numerical modeling</title><title>Meteoritics &amp; planetary science</title><addtitle>Meteorit Planet Sci</addtitle><description>A combination of shock recovery experiments and numerical modeling of shock deformation in the low‐shock pressure range from 2.5 to 20 GPa for two dry sandstone types of different porosity, a completely water‐saturated sandstone, and a well‐indurated quartzite provides new insights into strongly heterogeneous distribution of different shock features. (1) For nonporous quartzo‐feldspathic rocks, the traditional classification scheme (Stöffler ) is suitable with slight changes in pressure calibration. (2) For water‐saturated quartzose rocks, a cataclastic texture (microbreccia) seems to be typical for the shock pressure range up to 20 GPa. This microbreccia does not show formation of PDFs but diaplectic quartz glass/SiO2 melt is formed at 20 GPa (~1 vol%). (3) For porous quartzose rocks, the following sequence of shock features is observed with progressive increase in shock pressure (1) crushing of pores, (2) intense fracturing of quartz grains, and (3) increasing formation of diaplectic quartz glass/SiO2 melt replacing fracturing. The formation of diaplectic quartz glass/SiO2 melt, together with SiO2 high‐pressure phases, is a continuous process that strongly depends on porosity. This experimental observation is confirmed by our concomitant numerical modeling. Recalibration of the shock classification scheme results in a porosity versus shock pressure diagram illustrating distinct boundaries for the different shock stages.</description><subject>Classifications</subject><subject>Mathematical models</subject><subject>Melts</subject><subject>Porosity</subject><subject>Rocks</subject><subject>Silica glass</subject><subject>Silicon dioxide</subject><subject>Texture</subject><issn>1086-9379</issn><issn>1945-5100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1DAQxyMEEqVw4QkscSlIWcZ2nMTHqioLUoHl-2g5yQTcJnHq2bRdnoYX4CV4MpwNcOCA8MWj8e8_H_4nyUMOKx7P096OtOKi4OJWcsB1plLFAW7HGMo81bLQd5N7ROcAUnGZHSTf3-KVI-cHZoeGBaxt56pgt3PGtwxvHG3d8JnRF19fsLqzRK519R4g1vrALicbtl89IQsRITbRzHf-Ol00Y0CiKSA7EiuVCvjxbb2xj-dW_grDLrYYMbgehy3tZ-iRPMUxkA1TH19iyHrfYBfL3k_utLYjfPDrPkw-PDt9f_I8PXu9fnFyfJZaJUGkWV43soaqyaHIdSOhyiWAxVboUiM0GqDIaqFzBUpqXquYr6zKZdUqXUqQh8nRUncM_nJC2preUY1dZwf0ExleZqoUXJT8P1BRaMFLnUX00V_ouZ_CEBeZqRwEyLKI1JOFqoMnCtiaMX6PDTvDwcwmm9lkszc5wnyBr12Hu3-Q5uXx5t1vTbpoorV480djw4XJC1ko8-nV2mwKvf6o8zemlD8BS-u66Q</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Kowitz, Astrid</creator><creator>Güldemeister, Nicole</creator><creator>Schmitt, Ralf Thomas</creator><creator>Reimold, Wolf-Uwe</creator><creator>Wünnemann, Kai</creator><creator>Holzwarth, Andreas</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201610</creationdate><title>Revision and recalibration of existing shock classifications for quartzose rocks using low-shock pressure (2.5-20 GPa) recovery experiments and mesoscale numerical modeling</title><author>Kowitz, Astrid ; Güldemeister, Nicole ; Schmitt, Ralf Thomas ; Reimold, Wolf-Uwe ; Wünnemann, Kai ; Holzwarth, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5302-46cd3c0bd60769d30b6300aef2989e0d90074c296505391c5298ba563bf598303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classifications</topic><topic>Mathematical models</topic><topic>Melts</topic><topic>Porosity</topic><topic>Rocks</topic><topic>Silica glass</topic><topic>Silicon dioxide</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowitz, Astrid</creatorcontrib><creatorcontrib>Güldemeister, Nicole</creatorcontrib><creatorcontrib>Schmitt, Ralf Thomas</creatorcontrib><creatorcontrib>Reimold, Wolf-Uwe</creatorcontrib><creatorcontrib>Wünnemann, Kai</creatorcontrib><creatorcontrib>Holzwarth, Andreas</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Meteoritics &amp; planetary science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowitz, Astrid</au><au>Güldemeister, Nicole</au><au>Schmitt, Ralf Thomas</au><au>Reimold, Wolf-Uwe</au><au>Wünnemann, Kai</au><au>Holzwarth, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revision and recalibration of existing shock classifications for quartzose rocks using low-shock pressure (2.5-20 GPa) recovery experiments and mesoscale numerical modeling</atitle><jtitle>Meteoritics &amp; planetary science</jtitle><addtitle>Meteorit Planet Sci</addtitle><date>2016-10</date><risdate>2016</risdate><volume>51</volume><issue>10</issue><spage>1741</spage><epage>1761</epage><pages>1741-1761</pages><issn>1086-9379</issn><eissn>1945-5100</eissn><coden>MPSCFY</coden><abstract>A combination of shock recovery experiments and numerical modeling of shock deformation in the low‐shock pressure range from 2.5 to 20 GPa for two dry sandstone types of different porosity, a completely water‐saturated sandstone, and a well‐indurated quartzite provides new insights into strongly heterogeneous distribution of different shock features. (1) For nonporous quartzo‐feldspathic rocks, the traditional classification scheme (Stöffler ) is suitable with slight changes in pressure calibration. (2) For water‐saturated quartzose rocks, a cataclastic texture (microbreccia) seems to be typical for the shock pressure range up to 20 GPa. This microbreccia does not show formation of PDFs but diaplectic quartz glass/SiO2 melt is formed at 20 GPa (~1 vol%). (3) For porous quartzose rocks, the following sequence of shock features is observed with progressive increase in shock pressure (1) crushing of pores, (2) intense fracturing of quartz grains, and (3) increasing formation of diaplectic quartz glass/SiO2 melt replacing fracturing. The formation of diaplectic quartz glass/SiO2 melt, together with SiO2 high‐pressure phases, is a continuous process that strongly depends on porosity. This experimental observation is confirmed by our concomitant numerical modeling. Recalibration of the shock classification scheme results in a porosity versus shock pressure diagram illustrating distinct boundaries for the different shock stages.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/maps.12712</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1086-9379
ispartof Meteoritics & planetary science, 2016-10, Vol.51 (10), p.1741-1761
issn 1086-9379
1945-5100
language eng
recordid cdi_proquest_miscellaneous_1845821281
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects Classifications
Mathematical models
Melts
Porosity
Rocks
Silica glass
Silicon dioxide
Texture
title Revision and recalibration of existing shock classifications for quartzose rocks using low-shock pressure (2.5-20 GPa) recovery experiments and mesoscale numerical modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T14%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revision%20and%20recalibration%20of%20existing%20shock%20classifications%20for%20quartzose%20rocks%20using%20low-shock%20pressure%20(2.5-20%C2%A0GPa)%20recovery%20experiments%20and%20mesoscale%20numerical%20modeling&rft.jtitle=Meteoritics%20&%20planetary%20science&rft.au=Kowitz,%20Astrid&rft.date=2016-10&rft.volume=51&rft.issue=10&rft.spage=1741&rft.epage=1761&rft.pages=1741-1761&rft.issn=1086-9379&rft.eissn=1945-5100&rft.coden=MPSCFY&rft_id=info:doi/10.1111/maps.12712&rft_dat=%3Cproquest_cross%3E4204472481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826020387&rft_id=info:pmid/&rfr_iscdi=true