Hydrophobic Tagging-Assisted N‑Termini Enrichment for In-Depth N‑Terminome Analysis

The analysis of protein N-termini is of great importance for understanding the protein function and elucidating the proteolytic processing. Herein, we develop a negative enrichment strategy, termed as hydrophobic tagging-assisted N-termini enrichment (HYTANE) to achieve a global N-terminome analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2016-09, Vol.88 (17), p.8390-8395
Hauptverfasser: Chen, Lingfan, Shan, Yichu, Weng, Yejing, Sui, Zhigang, Zhang, Xiaodan, Liang, Zhen, Zhang, Lihua, Zhang, Yukui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8395
container_issue 17
container_start_page 8390
container_title Analytical chemistry (Washington)
container_volume 88
creator Chen, Lingfan
Shan, Yichu
Weng, Yejing
Sui, Zhigang
Zhang, Xiaodan
Liang, Zhen
Zhang, Lihua
Zhang, Yukui
description The analysis of protein N-termini is of great importance for understanding the protein function and elucidating the proteolytic processing. Herein, we develop a negative enrichment strategy, termed as hydrophobic tagging-assisted N-termini enrichment (HYTANE) to achieve a global N-terminome analysis. The HYTANE strategy showed a high efficiency in hydrophobic tagging and C18 material-assisted depletion using bovine serum albumin (BSA) as the sample. This strategy was applied to N-termini profiling from S. cerevisiae cell lysates and enabled the identification of 1096 protein N-termini, representing the largest N-terminome data set of S. cerevisiae. The identified N-terminal peptides accounted for 99% of all identified peptides, and no deficiency in acidic, histidine (His)-containing, and His-free N-terminal peptides was observed. The presented HYTANE strategy is therefore a highly selective, efficient, and unbiased strategy for the large scale N-terminome analysis. Furthermore, using the HYTANE strategy, we identified 329 cleavage sites and 291 substrates of caspases in Jurkat cells, demonstrating the great promise of HYTANE strategy for protease research. Data are available via ProteomeXchange with identifier PXD004690.
doi_str_mv 10.1021/acs.analchem.6b02453
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845819765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1817560895</sourcerecordid><originalsourceid>FETCH-LOGICAL-a455t-dadf5943f744fe084e6ba3870ef5b5e99c8a67b2efe3edc280a54c1ab2c595ad3</originalsourceid><addsrcrecordid>eNqNkctOwzAQRS0EouXxBwhFYsMmZezYibOsSqGVKtgUsYwcZ9KkyqPYyaI7foFf5EtIaQuIBWI1m3PvzOgQckFhQIHRG6XtQFWq0BmWAz8GxoV3QPpUMHB9Kdkh6QOA57IAoEdOrF0CUArUPyY9FgiP-ZL1yfNknZh6ldVxrp25WizyauEOrc1tg4nz8P76NkdT5lXujCuT66zEqnHS2jjTyr3FVZP9YOoSnWF30bpLn5GjVBUWz3fzlDzdjeejiTt7vJ-OhjNXcSEaN1FJKkLupQHnKYLk6MfKkwFgKmKBYail8oOYYYoeJppJUIJrqmKmRShU4p2S623vytQvLdomKnOrsShUhXVrIyq5kDQMfPEPlAbCBxlu0Ktf6LJuTffaJ9XdG1IedBTfUtrU1hpMo5XJS2XWEYVo4yjqHEV7R9HOURe73JW3cYnJV2gvpQNgC2zi34v_6vwA_yKiTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819439147</pqid></control><display><type>article</type><title>Hydrophobic Tagging-Assisted N‑Termini Enrichment for In-Depth N‑Terminome Analysis</title><source>MEDLINE</source><source>ACS Publications</source><creator>Chen, Lingfan ; Shan, Yichu ; Weng, Yejing ; Sui, Zhigang ; Zhang, Xiaodan ; Liang, Zhen ; Zhang, Lihua ; Zhang, Yukui</creator><creatorcontrib>Chen, Lingfan ; Shan, Yichu ; Weng, Yejing ; Sui, Zhigang ; Zhang, Xiaodan ; Liang, Zhen ; Zhang, Lihua ; Zhang, Yukui</creatorcontrib><description>The analysis of protein N-termini is of great importance for understanding the protein function and elucidating the proteolytic processing. Herein, we develop a negative enrichment strategy, termed as hydrophobic tagging-assisted N-termini enrichment (HYTANE) to achieve a global N-terminome analysis. The HYTANE strategy showed a high efficiency in hydrophobic tagging and C18 material-assisted depletion using bovine serum albumin (BSA) as the sample. This strategy was applied to N-termini profiling from S. cerevisiae cell lysates and enabled the identification of 1096 protein N-termini, representing the largest N-terminome data set of S. cerevisiae. The identified N-terminal peptides accounted for 99% of all identified peptides, and no deficiency in acidic, histidine (His)-containing, and His-free N-terminal peptides was observed. The presented HYTANE strategy is therefore a highly selective, efficient, and unbiased strategy for the large scale N-terminome analysis. Furthermore, using the HYTANE strategy, we identified 329 cleavage sites and 291 substrates of caspases in Jurkat cells, demonstrating the great promise of HYTANE strategy for protease research. Data are available via ProteomeXchange with identifier PXD004690.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b02453</identifier><identifier>PMID: 27532682</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Caspases - metabolism ; Cattle ; Cells ; Cleavage ; Depletion ; Enrichment ; Histidine ; Humans ; Hydrophobic and Hydrophilic Interactions ; Jurkat Cells ; Peptide Fragments - analysis ; Peptide Fragments - metabolism ; Peptides ; Profiling ; Proteases ; Proteins ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - metabolism ; Serum Albumin, Bovine - analysis ; Serum Albumin, Bovine - metabolism ; Strategy ; Yeast</subject><ispartof>Analytical chemistry (Washington), 2016-09, Vol.88 (17), p.8390-8395</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 6, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a455t-dadf5943f744fe084e6ba3870ef5b5e99c8a67b2efe3edc280a54c1ab2c595ad3</citedby><cites>FETCH-LOGICAL-a455t-dadf5943f744fe084e6ba3870ef5b5e99c8a67b2efe3edc280a54c1ab2c595ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.6b02453$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.6b02453$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27532682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lingfan</creatorcontrib><creatorcontrib>Shan, Yichu</creatorcontrib><creatorcontrib>Weng, Yejing</creatorcontrib><creatorcontrib>Sui, Zhigang</creatorcontrib><creatorcontrib>Zhang, Xiaodan</creatorcontrib><creatorcontrib>Liang, Zhen</creatorcontrib><creatorcontrib>Zhang, Lihua</creatorcontrib><creatorcontrib>Zhang, Yukui</creatorcontrib><title>Hydrophobic Tagging-Assisted N‑Termini Enrichment for In-Depth N‑Terminome Analysis</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The analysis of protein N-termini is of great importance for understanding the protein function and elucidating the proteolytic processing. Herein, we develop a negative enrichment strategy, termed as hydrophobic tagging-assisted N-termini enrichment (HYTANE) to achieve a global N-terminome analysis. The HYTANE strategy showed a high efficiency in hydrophobic tagging and C18 material-assisted depletion using bovine serum albumin (BSA) as the sample. This strategy was applied to N-termini profiling from S. cerevisiae cell lysates and enabled the identification of 1096 protein N-termini, representing the largest N-terminome data set of S. cerevisiae. The identified N-terminal peptides accounted for 99% of all identified peptides, and no deficiency in acidic, histidine (His)-containing, and His-free N-terminal peptides was observed. The presented HYTANE strategy is therefore a highly selective, efficient, and unbiased strategy for the large scale N-terminome analysis. Furthermore, using the HYTANE strategy, we identified 329 cleavage sites and 291 substrates of caspases in Jurkat cells, demonstrating the great promise of HYTANE strategy for protease research. Data are available via ProteomeXchange with identifier PXD004690.</description><subject>Animals</subject><subject>Caspases - metabolism</subject><subject>Cattle</subject><subject>Cells</subject><subject>Cleavage</subject><subject>Depletion</subject><subject>Enrichment</subject><subject>Histidine</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Jurkat Cells</subject><subject>Peptide Fragments - analysis</subject><subject>Peptide Fragments - metabolism</subject><subject>Peptides</subject><subject>Profiling</subject><subject>Proteases</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Serum Albumin, Bovine - analysis</subject><subject>Serum Albumin, Bovine - metabolism</subject><subject>Strategy</subject><subject>Yeast</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctOwzAQRS0EouXxBwhFYsMmZezYibOsSqGVKtgUsYwcZ9KkyqPYyaI7foFf5EtIaQuIBWI1m3PvzOgQckFhQIHRG6XtQFWq0BmWAz8GxoV3QPpUMHB9Kdkh6QOA57IAoEdOrF0CUArUPyY9FgiP-ZL1yfNknZh6ldVxrp25WizyauEOrc1tg4nz8P76NkdT5lXujCuT66zEqnHS2jjTyr3FVZP9YOoSnWF30bpLn5GjVBUWz3fzlDzdjeejiTt7vJ-OhjNXcSEaN1FJKkLupQHnKYLk6MfKkwFgKmKBYail8oOYYYoeJppJUIJrqmKmRShU4p2S623vytQvLdomKnOrsShUhXVrIyq5kDQMfPEPlAbCBxlu0Ktf6LJuTffaJ9XdG1IedBTfUtrU1hpMo5XJS2XWEYVo4yjqHEV7R9HOURe73JW3cYnJV2gvpQNgC2zi34v_6vwA_yKiTA</recordid><startdate>20160906</startdate><enddate>20160906</enddate><creator>Chen, Lingfan</creator><creator>Shan, Yichu</creator><creator>Weng, Yejing</creator><creator>Sui, Zhigang</creator><creator>Zhang, Xiaodan</creator><creator>Liang, Zhen</creator><creator>Zhang, Lihua</creator><creator>Zhang, Yukui</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20160906</creationdate><title>Hydrophobic Tagging-Assisted N‑Termini Enrichment for In-Depth N‑Terminome Analysis</title><author>Chen, Lingfan ; Shan, Yichu ; Weng, Yejing ; Sui, Zhigang ; Zhang, Xiaodan ; Liang, Zhen ; Zhang, Lihua ; Zhang, Yukui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a455t-dadf5943f744fe084e6ba3870ef5b5e99c8a67b2efe3edc280a54c1ab2c595ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Caspases - metabolism</topic><topic>Cattle</topic><topic>Cells</topic><topic>Cleavage</topic><topic>Depletion</topic><topic>Enrichment</topic><topic>Histidine</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Jurkat Cells</topic><topic>Peptide Fragments - analysis</topic><topic>Peptide Fragments - metabolism</topic><topic>Peptides</topic><topic>Profiling</topic><topic>Proteases</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Serum Albumin, Bovine - analysis</topic><topic>Serum Albumin, Bovine - metabolism</topic><topic>Strategy</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lingfan</creatorcontrib><creatorcontrib>Shan, Yichu</creatorcontrib><creatorcontrib>Weng, Yejing</creatorcontrib><creatorcontrib>Sui, Zhigang</creatorcontrib><creatorcontrib>Zhang, Xiaodan</creatorcontrib><creatorcontrib>Liang, Zhen</creatorcontrib><creatorcontrib>Zhang, Lihua</creatorcontrib><creatorcontrib>Zhang, Yukui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lingfan</au><au>Shan, Yichu</au><au>Weng, Yejing</au><au>Sui, Zhigang</au><au>Zhang, Xiaodan</au><au>Liang, Zhen</au><au>Zhang, Lihua</au><au>Zhang, Yukui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrophobic Tagging-Assisted N‑Termini Enrichment for In-Depth N‑Terminome Analysis</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2016-09-06</date><risdate>2016</risdate><volume>88</volume><issue>17</issue><spage>8390</spage><epage>8395</epage><pages>8390-8395</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>The analysis of protein N-termini is of great importance for understanding the protein function and elucidating the proteolytic processing. Herein, we develop a negative enrichment strategy, termed as hydrophobic tagging-assisted N-termini enrichment (HYTANE) to achieve a global N-terminome analysis. The HYTANE strategy showed a high efficiency in hydrophobic tagging and C18 material-assisted depletion using bovine serum albumin (BSA) as the sample. This strategy was applied to N-termini profiling from S. cerevisiae cell lysates and enabled the identification of 1096 protein N-termini, representing the largest N-terminome data set of S. cerevisiae. The identified N-terminal peptides accounted for 99% of all identified peptides, and no deficiency in acidic, histidine (His)-containing, and His-free N-terminal peptides was observed. The presented HYTANE strategy is therefore a highly selective, efficient, and unbiased strategy for the large scale N-terminome analysis. Furthermore, using the HYTANE strategy, we identified 329 cleavage sites and 291 substrates of caspases in Jurkat cells, demonstrating the great promise of HYTANE strategy for protease research. Data are available via ProteomeXchange with identifier PXD004690.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27532682</pmid><doi>10.1021/acs.analchem.6b02453</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2016-09, Vol.88 (17), p.8390-8395
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1845819765
source MEDLINE; ACS Publications
subjects Animals
Caspases - metabolism
Cattle
Cells
Cleavage
Depletion
Enrichment
Histidine
Humans
Hydrophobic and Hydrophilic Interactions
Jurkat Cells
Peptide Fragments - analysis
Peptide Fragments - metabolism
Peptides
Profiling
Proteases
Proteins
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - metabolism
Serum Albumin, Bovine - analysis
Serum Albumin, Bovine - metabolism
Strategy
Yeast
title Hydrophobic Tagging-Assisted N‑Termini Enrichment for In-Depth N‑Terminome Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrophobic%20Tagging-Assisted%20N%E2%80%91Termini%20Enrichment%20for%20In-Depth%20N%E2%80%91Terminome%20Analysis&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Chen,%20Lingfan&rft.date=2016-09-06&rft.volume=88&rft.issue=17&rft.spage=8390&rft.epage=8395&rft.pages=8390-8395&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b02453&rft_dat=%3Cproquest_cross%3E1817560895%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1819439147&rft_id=info:pmid/27532682&rfr_iscdi=true