Hydrophobic Tagging-Assisted N‑Termini Enrichment for In-Depth N‑Terminome Analysis
The analysis of protein N-termini is of great importance for understanding the protein function and elucidating the proteolytic processing. Herein, we develop a negative enrichment strategy, termed as hydrophobic tagging-assisted N-termini enrichment (HYTANE) to achieve a global N-terminome analysis...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2016-09, Vol.88 (17), p.8390-8395 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8395 |
---|---|
container_issue | 17 |
container_start_page | 8390 |
container_title | Analytical chemistry (Washington) |
container_volume | 88 |
creator | Chen, Lingfan Shan, Yichu Weng, Yejing Sui, Zhigang Zhang, Xiaodan Liang, Zhen Zhang, Lihua Zhang, Yukui |
description | The analysis of protein N-termini is of great importance for understanding the protein function and elucidating the proteolytic processing. Herein, we develop a negative enrichment strategy, termed as hydrophobic tagging-assisted N-termini enrichment (HYTANE) to achieve a global N-terminome analysis. The HYTANE strategy showed a high efficiency in hydrophobic tagging and C18 material-assisted depletion using bovine serum albumin (BSA) as the sample. This strategy was applied to N-termini profiling from S. cerevisiae cell lysates and enabled the identification of 1096 protein N-termini, representing the largest N-terminome data set of S. cerevisiae. The identified N-terminal peptides accounted for 99% of all identified peptides, and no deficiency in acidic, histidine (His)-containing, and His-free N-terminal peptides was observed. The presented HYTANE strategy is therefore a highly selective, efficient, and unbiased strategy for the large scale N-terminome analysis. Furthermore, using the HYTANE strategy, we identified 329 cleavage sites and 291 substrates of caspases in Jurkat cells, demonstrating the great promise of HYTANE strategy for protease research. Data are available via ProteomeXchange with identifier PXD004690. |
doi_str_mv | 10.1021/acs.analchem.6b02453 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845819765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1817560895</sourcerecordid><originalsourceid>FETCH-LOGICAL-a455t-dadf5943f744fe084e6ba3870ef5b5e99c8a67b2efe3edc280a54c1ab2c595ad3</originalsourceid><addsrcrecordid>eNqNkctOwzAQRS0EouXxBwhFYsMmZezYibOsSqGVKtgUsYwcZ9KkyqPYyaI7foFf5EtIaQuIBWI1m3PvzOgQckFhQIHRG6XtQFWq0BmWAz8GxoV3QPpUMHB9Kdkh6QOA57IAoEdOrF0CUArUPyY9FgiP-ZL1yfNknZh6ldVxrp25WizyauEOrc1tg4nz8P76NkdT5lXujCuT66zEqnHS2jjTyr3FVZP9YOoSnWF30bpLn5GjVBUWz3fzlDzdjeejiTt7vJ-OhjNXcSEaN1FJKkLupQHnKYLk6MfKkwFgKmKBYail8oOYYYoeJppJUIJrqmKmRShU4p2S623vytQvLdomKnOrsShUhXVrIyq5kDQMfPEPlAbCBxlu0Ktf6LJuTffaJ9XdG1IedBTfUtrU1hpMo5XJS2XWEYVo4yjqHEV7R9HOURe73JW3cYnJV2gvpQNgC2zi34v_6vwA_yKiTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819439147</pqid></control><display><type>article</type><title>Hydrophobic Tagging-Assisted N‑Termini Enrichment for In-Depth N‑Terminome Analysis</title><source>MEDLINE</source><source>ACS Publications</source><creator>Chen, Lingfan ; Shan, Yichu ; Weng, Yejing ; Sui, Zhigang ; Zhang, Xiaodan ; Liang, Zhen ; Zhang, Lihua ; Zhang, Yukui</creator><creatorcontrib>Chen, Lingfan ; Shan, Yichu ; Weng, Yejing ; Sui, Zhigang ; Zhang, Xiaodan ; Liang, Zhen ; Zhang, Lihua ; Zhang, Yukui</creatorcontrib><description>The analysis of protein N-termini is of great importance for understanding the protein function and elucidating the proteolytic processing. Herein, we develop a negative enrichment strategy, termed as hydrophobic tagging-assisted N-termini enrichment (HYTANE) to achieve a global N-terminome analysis. The HYTANE strategy showed a high efficiency in hydrophobic tagging and C18 material-assisted depletion using bovine serum albumin (BSA) as the sample. This strategy was applied to N-termini profiling from S. cerevisiae cell lysates and enabled the identification of 1096 protein N-termini, representing the largest N-terminome data set of S. cerevisiae. The identified N-terminal peptides accounted for 99% of all identified peptides, and no deficiency in acidic, histidine (His)-containing, and His-free N-terminal peptides was observed. The presented HYTANE strategy is therefore a highly selective, efficient, and unbiased strategy for the large scale N-terminome analysis. Furthermore, using the HYTANE strategy, we identified 329 cleavage sites and 291 substrates of caspases in Jurkat cells, demonstrating the great promise of HYTANE strategy for protease research. Data are available via ProteomeXchange with identifier PXD004690.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b02453</identifier><identifier>PMID: 27532682</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Caspases - metabolism ; Cattle ; Cells ; Cleavage ; Depletion ; Enrichment ; Histidine ; Humans ; Hydrophobic and Hydrophilic Interactions ; Jurkat Cells ; Peptide Fragments - analysis ; Peptide Fragments - metabolism ; Peptides ; Profiling ; Proteases ; Proteins ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - metabolism ; Serum Albumin, Bovine - analysis ; Serum Albumin, Bovine - metabolism ; Strategy ; Yeast</subject><ispartof>Analytical chemistry (Washington), 2016-09, Vol.88 (17), p.8390-8395</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 6, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a455t-dadf5943f744fe084e6ba3870ef5b5e99c8a67b2efe3edc280a54c1ab2c595ad3</citedby><cites>FETCH-LOGICAL-a455t-dadf5943f744fe084e6ba3870ef5b5e99c8a67b2efe3edc280a54c1ab2c595ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.6b02453$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.6b02453$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27532682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lingfan</creatorcontrib><creatorcontrib>Shan, Yichu</creatorcontrib><creatorcontrib>Weng, Yejing</creatorcontrib><creatorcontrib>Sui, Zhigang</creatorcontrib><creatorcontrib>Zhang, Xiaodan</creatorcontrib><creatorcontrib>Liang, Zhen</creatorcontrib><creatorcontrib>Zhang, Lihua</creatorcontrib><creatorcontrib>Zhang, Yukui</creatorcontrib><title>Hydrophobic Tagging-Assisted N‑Termini Enrichment for In-Depth N‑Terminome Analysis</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The analysis of protein N-termini is of great importance for understanding the protein function and elucidating the proteolytic processing. Herein, we develop a negative enrichment strategy, termed as hydrophobic tagging-assisted N-termini enrichment (HYTANE) to achieve a global N-terminome analysis. The HYTANE strategy showed a high efficiency in hydrophobic tagging and C18 material-assisted depletion using bovine serum albumin (BSA) as the sample. This strategy was applied to N-termini profiling from S. cerevisiae cell lysates and enabled the identification of 1096 protein N-termini, representing the largest N-terminome data set of S. cerevisiae. The identified N-terminal peptides accounted for 99% of all identified peptides, and no deficiency in acidic, histidine (His)-containing, and His-free N-terminal peptides was observed. The presented HYTANE strategy is therefore a highly selective, efficient, and unbiased strategy for the large scale N-terminome analysis. Furthermore, using the HYTANE strategy, we identified 329 cleavage sites and 291 substrates of caspases in Jurkat cells, demonstrating the great promise of HYTANE strategy for protease research. Data are available via ProteomeXchange with identifier PXD004690.</description><subject>Animals</subject><subject>Caspases - metabolism</subject><subject>Cattle</subject><subject>Cells</subject><subject>Cleavage</subject><subject>Depletion</subject><subject>Enrichment</subject><subject>Histidine</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Jurkat Cells</subject><subject>Peptide Fragments - analysis</subject><subject>Peptide Fragments - metabolism</subject><subject>Peptides</subject><subject>Profiling</subject><subject>Proteases</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Serum Albumin, Bovine - analysis</subject><subject>Serum Albumin, Bovine - metabolism</subject><subject>Strategy</subject><subject>Yeast</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctOwzAQRS0EouXxBwhFYsMmZezYibOsSqGVKtgUsYwcZ9KkyqPYyaI7foFf5EtIaQuIBWI1m3PvzOgQckFhQIHRG6XtQFWq0BmWAz8GxoV3QPpUMHB9Kdkh6QOA57IAoEdOrF0CUArUPyY9FgiP-ZL1yfNknZh6ldVxrp25WizyauEOrc1tg4nz8P76NkdT5lXujCuT66zEqnHS2jjTyr3FVZP9YOoSnWF30bpLn5GjVBUWz3fzlDzdjeejiTt7vJ-OhjNXcSEaN1FJKkLupQHnKYLk6MfKkwFgKmKBYail8oOYYYoeJppJUIJrqmKmRShU4p2S623vytQvLdomKnOrsShUhXVrIyq5kDQMfPEPlAbCBxlu0Ktf6LJuTffaJ9XdG1IedBTfUtrU1hpMo5XJS2XWEYVo4yjqHEV7R9HOURe73JW3cYnJV2gvpQNgC2zi34v_6vwA_yKiTA</recordid><startdate>20160906</startdate><enddate>20160906</enddate><creator>Chen, Lingfan</creator><creator>Shan, Yichu</creator><creator>Weng, Yejing</creator><creator>Sui, Zhigang</creator><creator>Zhang, Xiaodan</creator><creator>Liang, Zhen</creator><creator>Zhang, Lihua</creator><creator>Zhang, Yukui</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20160906</creationdate><title>Hydrophobic Tagging-Assisted N‑Termini Enrichment for In-Depth N‑Terminome Analysis</title><author>Chen, Lingfan ; Shan, Yichu ; Weng, Yejing ; Sui, Zhigang ; Zhang, Xiaodan ; Liang, Zhen ; Zhang, Lihua ; Zhang, Yukui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a455t-dadf5943f744fe084e6ba3870ef5b5e99c8a67b2efe3edc280a54c1ab2c595ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Caspases - metabolism</topic><topic>Cattle</topic><topic>Cells</topic><topic>Cleavage</topic><topic>Depletion</topic><topic>Enrichment</topic><topic>Histidine</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Jurkat Cells</topic><topic>Peptide Fragments - analysis</topic><topic>Peptide Fragments - metabolism</topic><topic>Peptides</topic><topic>Profiling</topic><topic>Proteases</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Serum Albumin, Bovine - analysis</topic><topic>Serum Albumin, Bovine - metabolism</topic><topic>Strategy</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lingfan</creatorcontrib><creatorcontrib>Shan, Yichu</creatorcontrib><creatorcontrib>Weng, Yejing</creatorcontrib><creatorcontrib>Sui, Zhigang</creatorcontrib><creatorcontrib>Zhang, Xiaodan</creatorcontrib><creatorcontrib>Liang, Zhen</creatorcontrib><creatorcontrib>Zhang, Lihua</creatorcontrib><creatorcontrib>Zhang, Yukui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lingfan</au><au>Shan, Yichu</au><au>Weng, Yejing</au><au>Sui, Zhigang</au><au>Zhang, Xiaodan</au><au>Liang, Zhen</au><au>Zhang, Lihua</au><au>Zhang, Yukui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrophobic Tagging-Assisted N‑Termini Enrichment for In-Depth N‑Terminome Analysis</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2016-09-06</date><risdate>2016</risdate><volume>88</volume><issue>17</issue><spage>8390</spage><epage>8395</epage><pages>8390-8395</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>The analysis of protein N-termini is of great importance for understanding the protein function and elucidating the proteolytic processing. Herein, we develop a negative enrichment strategy, termed as hydrophobic tagging-assisted N-termini enrichment (HYTANE) to achieve a global N-terminome analysis. The HYTANE strategy showed a high efficiency in hydrophobic tagging and C18 material-assisted depletion using bovine serum albumin (BSA) as the sample. This strategy was applied to N-termini profiling from S. cerevisiae cell lysates and enabled the identification of 1096 protein N-termini, representing the largest N-terminome data set of S. cerevisiae. The identified N-terminal peptides accounted for 99% of all identified peptides, and no deficiency in acidic, histidine (His)-containing, and His-free N-terminal peptides was observed. The presented HYTANE strategy is therefore a highly selective, efficient, and unbiased strategy for the large scale N-terminome analysis. Furthermore, using the HYTANE strategy, we identified 329 cleavage sites and 291 substrates of caspases in Jurkat cells, demonstrating the great promise of HYTANE strategy for protease research. Data are available via ProteomeXchange with identifier PXD004690.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27532682</pmid><doi>10.1021/acs.analchem.6b02453</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2016-09, Vol.88 (17), p.8390-8395 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845819765 |
source | MEDLINE; ACS Publications |
subjects | Animals Caspases - metabolism Cattle Cells Cleavage Depletion Enrichment Histidine Humans Hydrophobic and Hydrophilic Interactions Jurkat Cells Peptide Fragments - analysis Peptide Fragments - metabolism Peptides Profiling Proteases Proteins Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - metabolism Serum Albumin, Bovine - analysis Serum Albumin, Bovine - metabolism Strategy Yeast |
title | Hydrophobic Tagging-Assisted N‑Termini Enrichment for In-Depth N‑Terminome Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrophobic%20Tagging-Assisted%20N%E2%80%91Termini%20Enrichment%20for%20In-Depth%20N%E2%80%91Terminome%20Analysis&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Chen,%20Lingfan&rft.date=2016-09-06&rft.volume=88&rft.issue=17&rft.spage=8390&rft.epage=8395&rft.pages=8390-8395&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b02453&rft_dat=%3Cproquest_cross%3E1817560895%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1819439147&rft_id=info:pmid/27532682&rfr_iscdi=true |