Femtomole Detection of Proteins Using a Label-Free Nanostructured Porous Silicon Interferometer for Perspective Ultrasensitive Biosensing

Nanostructured porous silicon (PS) is a promising material for label-free optical detection of biomolecules, though it currently suffers of limited clinical diagnostic applications due to insufficient sensitivity. In this regard, here we introduce an ultrasensitive and robust signal processing strat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2016-09, Vol.88 (17), p.8502-8509
Hauptverfasser: Mariani, Stefano, Strambini, Lucanos Marsilio, Barillaro, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8509
container_issue 17
container_start_page 8502
container_title Analytical chemistry (Washington)
container_volume 88
creator Mariani, Stefano
Strambini, Lucanos Marsilio
Barillaro, Giuseppe
description Nanostructured porous silicon (PS) is a promising material for label-free optical detection of biomolecules, though it currently suffers of limited clinical diagnostic applications due to insufficient sensitivity. In this regard, here we introduce an ultrasensitive and robust signal processing strategy for PS biosensors that relies on the calculation of the average value over wavelength of spectral interferograms, namely IAW, obtained on PS interferometer by subtraction (wavelength by wavelength) of reflection spectra acquired after adsorption of biomolecules inside the nanopores from a reference reflection spectrum recorded in acetate buffer. As a case study, we choose to monitor bovine serum albumin (BSA) unspecific adsorption, which has been often employed in the literature as a model for proof-of-concept studies of perspective biosensing applications. The proposed IAW signal processing strategy enables reliable detection of BSA at concentrations in the range from 150 pM to 15 μM (down to 3 orders of magnitude lower than those targeted in the current literature) using a PS interferometer operating in label-free mode without any amplification strategies, with good sample-to-sample reproducibility over the whole range of tested concentrations (%CV = 16% over 5 replicates) and good signal-to-noise ratio also at the lowest tested concentration (S/N ≈ 4.6 at 150 pM). A detection limit (DL) of 20 pM (20 femtomoles, 1 mL) is estimated from the sigmoidal function best fitting (R 2 = 0.989) IAW experimental data over the whole range of tested concentrations. This is the lowest DL that has been reported in the literature since the seminal paper of Sailor and co-workers (1997) on the use of PS interferometer for biosensing, and lowers of 4 orders of magnitude DL attained with label-free PS interferometers using conventional effective optical thickness (EOT) calculation through reflective interferometric Fourier transform spectroscopy. Accordingly, the IAW signal processing strategy envisage bringing PS optical transduction at the forefront of ultrasensitive label-free biosensing techniques, especially for point-of-care clinical analysis where low analyte concentrations have to be detected in a small amount of biological samples.
doi_str_mv 10.1021/acs.analchem.6b01228
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845817570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1817561711</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525t-d714c05bc107b3332d955e23eaffb874307dc134688d6d8dd36817183ad3f1e43</originalsourceid><addsrcrecordid>eNqNkltrFDEYhoModq3-A5GAN72ZbQ6TSeZSq6uFRRd0r4dM8k1NmUnWJCP0J_ivzR6q0AvpVfjgeZ-cXoReU7KkhNFLbdJSez2aHzAtm55QxtQTtKCCkapRij1FC0IIr5gk5Ay9SOmWEEoJbZ6jMyZr2cpGLdDvFUw5TGEE_AEymOyCx2HAmxgyOJ_wNjl_gzVe6x7GahUB8BftQ8pxNnmOYPEmxDAn_M2NzpTwtc8QB4hhKr6IhxDxBmLa7d2_AG_HHHUCn9xhfO_CYfA3L9GzQY8JXp3Wc7Rdffx-9blaf_10ffVuXWnBRK6spLUhojeUyJ5zzmwrBDAOehh6JWtOpDWU1-UJbGOVtbxRVFLFteUDhZqfo4ujdxfDzxlS7iaXDIyj9lDu0VFVi5IQkjwCZbJljRSPsRZlUw5CC_r2AXob5lh-8kC1NW9ZywtVHykTQ0oRhm4X3aTjXUdJty9AVwrQ3RegOxWgxN6c5HM_gf0buv_xApAjsI__2_h_zj_x98Cn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819439293</pqid></control><display><type>article</type><title>Femtomole Detection of Proteins Using a Label-Free Nanostructured Porous Silicon Interferometer for Perspective Ultrasensitive Biosensing</title><source>ACS Publications</source><source>MEDLINE</source><creator>Mariani, Stefano ; Strambini, Lucanos Marsilio ; Barillaro, Giuseppe</creator><creatorcontrib>Mariani, Stefano ; Strambini, Lucanos Marsilio ; Barillaro, Giuseppe</creatorcontrib><description>Nanostructured porous silicon (PS) is a promising material for label-free optical detection of biomolecules, though it currently suffers of limited clinical diagnostic applications due to insufficient sensitivity. In this regard, here we introduce an ultrasensitive and robust signal processing strategy for PS biosensors that relies on the calculation of the average value over wavelength of spectral interferograms, namely IAW, obtained on PS interferometer by subtraction (wavelength by wavelength) of reflection spectra acquired after adsorption of biomolecules inside the nanopores from a reference reflection spectrum recorded in acetate buffer. As a case study, we choose to monitor bovine serum albumin (BSA) unspecific adsorption, which has been often employed in the literature as a model for proof-of-concept studies of perspective biosensing applications. The proposed IAW signal processing strategy enables reliable detection of BSA at concentrations in the range from 150 pM to 15 μM (down to 3 orders of magnitude lower than those targeted in the current literature) using a PS interferometer operating in label-free mode without any amplification strategies, with good sample-to-sample reproducibility over the whole range of tested concentrations (%CV = 16% over 5 replicates) and good signal-to-noise ratio also at the lowest tested concentration (S/N ≈ 4.6 at 150 pM). A detection limit (DL) of 20 pM (20 femtomoles, 1 mL) is estimated from the sigmoidal function best fitting (R 2 = 0.989) IAW experimental data over the whole range of tested concentrations. This is the lowest DL that has been reported in the literature since the seminal paper of Sailor and co-workers (1997) on the use of PS interferometer for biosensing, and lowers of 4 orders of magnitude DL attained with label-free PS interferometers using conventional effective optical thickness (EOT) calculation through reflective interferometric Fourier transform spectroscopy. Accordingly, the IAW signal processing strategy envisage bringing PS optical transduction at the forefront of ultrasensitive label-free biosensing techniques, especially for point-of-care clinical analysis where low analyte concentrations have to be detected in a small amount of biological samples.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b01228</identifier><identifier>PMID: 27479768</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Analytical chemistry ; Animals ; Biomolecules ; Biosensing Techniques ; Biosensors ; Cattle ; Interferometers ; Mathematical models ; Nanostructure ; Nanostructured materials ; Nanostructures - chemistry ; Particle Size ; Porosity ; Serum Albumin, Bovine - analysis ; Signal processing ; Signal to noise ratio ; Silicon ; Silicon - chemistry ; Strategy ; Surface Properties ; Wavelengths</subject><ispartof>Analytical chemistry (Washington), 2016-09, Vol.88 (17), p.8502-8509</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 6, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a525t-d714c05bc107b3332d955e23eaffb874307dc134688d6d8dd36817183ad3f1e43</citedby><cites>FETCH-LOGICAL-a525t-d714c05bc107b3332d955e23eaffb874307dc134688d6d8dd36817183ad3f1e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.6b01228$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.6b01228$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27479768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mariani, Stefano</creatorcontrib><creatorcontrib>Strambini, Lucanos Marsilio</creatorcontrib><creatorcontrib>Barillaro, Giuseppe</creatorcontrib><title>Femtomole Detection of Proteins Using a Label-Free Nanostructured Porous Silicon Interferometer for Perspective Ultrasensitive Biosensing</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Nanostructured porous silicon (PS) is a promising material for label-free optical detection of biomolecules, though it currently suffers of limited clinical diagnostic applications due to insufficient sensitivity. In this regard, here we introduce an ultrasensitive and robust signal processing strategy for PS biosensors that relies on the calculation of the average value over wavelength of spectral interferograms, namely IAW, obtained on PS interferometer by subtraction (wavelength by wavelength) of reflection spectra acquired after adsorption of biomolecules inside the nanopores from a reference reflection spectrum recorded in acetate buffer. As a case study, we choose to monitor bovine serum albumin (BSA) unspecific adsorption, which has been often employed in the literature as a model for proof-of-concept studies of perspective biosensing applications. The proposed IAW signal processing strategy enables reliable detection of BSA at concentrations in the range from 150 pM to 15 μM (down to 3 orders of magnitude lower than those targeted in the current literature) using a PS interferometer operating in label-free mode without any amplification strategies, with good sample-to-sample reproducibility over the whole range of tested concentrations (%CV = 16% over 5 replicates) and good signal-to-noise ratio also at the lowest tested concentration (S/N ≈ 4.6 at 150 pM). A detection limit (DL) of 20 pM (20 femtomoles, 1 mL) is estimated from the sigmoidal function best fitting (R 2 = 0.989) IAW experimental data over the whole range of tested concentrations. This is the lowest DL that has been reported in the literature since the seminal paper of Sailor and co-workers (1997) on the use of PS interferometer for biosensing, and lowers of 4 orders of magnitude DL attained with label-free PS interferometers using conventional effective optical thickness (EOT) calculation through reflective interferometric Fourier transform spectroscopy. Accordingly, the IAW signal processing strategy envisage bringing PS optical transduction at the forefront of ultrasensitive label-free biosensing techniques, especially for point-of-care clinical analysis where low analyte concentrations have to be detected in a small amount of biological samples.</description><subject>Adsorption</subject><subject>Analytical chemistry</subject><subject>Animals</subject><subject>Biomolecules</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Cattle</subject><subject>Interferometers</subject><subject>Mathematical models</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Nanostructures - chemistry</subject><subject>Particle Size</subject><subject>Porosity</subject><subject>Serum Albumin, Bovine - analysis</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Silicon</subject><subject>Silicon - chemistry</subject><subject>Strategy</subject><subject>Surface Properties</subject><subject>Wavelengths</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkltrFDEYhoModq3-A5GAN72ZbQ6TSeZSq6uFRRd0r4dM8k1NmUnWJCP0J_ivzR6q0AvpVfjgeZ-cXoReU7KkhNFLbdJSez2aHzAtm55QxtQTtKCCkapRij1FC0IIr5gk5Ay9SOmWEEoJbZ6jMyZr2cpGLdDvFUw5TGEE_AEymOyCx2HAmxgyOJ_wNjl_gzVe6x7GahUB8BftQ8pxNnmOYPEmxDAn_M2NzpTwtc8QB4hhKr6IhxDxBmLa7d2_AG_HHHUCn9xhfO_CYfA3L9GzQY8JXp3Wc7Rdffx-9blaf_10ffVuXWnBRK6spLUhojeUyJ5zzmwrBDAOehh6JWtOpDWU1-UJbGOVtbxRVFLFteUDhZqfo4ujdxfDzxlS7iaXDIyj9lDu0VFVi5IQkjwCZbJljRSPsRZlUw5CC_r2AXob5lh-8kC1NW9ZywtVHykTQ0oRhm4X3aTjXUdJty9AVwrQ3RegOxWgxN6c5HM_gf0buv_xApAjsI__2_h_zj_x98Cn</recordid><startdate>20160906</startdate><enddate>20160906</enddate><creator>Mariani, Stefano</creator><creator>Strambini, Lucanos Marsilio</creator><creator>Barillaro, Giuseppe</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20160906</creationdate><title>Femtomole Detection of Proteins Using a Label-Free Nanostructured Porous Silicon Interferometer for Perspective Ultrasensitive Biosensing</title><author>Mariani, Stefano ; Strambini, Lucanos Marsilio ; Barillaro, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525t-d714c05bc107b3332d955e23eaffb874307dc134688d6d8dd36817183ad3f1e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adsorption</topic><topic>Analytical chemistry</topic><topic>Animals</topic><topic>Biomolecules</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Cattle</topic><topic>Interferometers</topic><topic>Mathematical models</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Nanostructures - chemistry</topic><topic>Particle Size</topic><topic>Porosity</topic><topic>Serum Albumin, Bovine - analysis</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Silicon</topic><topic>Silicon - chemistry</topic><topic>Strategy</topic><topic>Surface Properties</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mariani, Stefano</creatorcontrib><creatorcontrib>Strambini, Lucanos Marsilio</creatorcontrib><creatorcontrib>Barillaro, Giuseppe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mariani, Stefano</au><au>Strambini, Lucanos Marsilio</au><au>Barillaro, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Femtomole Detection of Proteins Using a Label-Free Nanostructured Porous Silicon Interferometer for Perspective Ultrasensitive Biosensing</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2016-09-06</date><risdate>2016</risdate><volume>88</volume><issue>17</issue><spage>8502</spage><epage>8509</epage><pages>8502-8509</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Nanostructured porous silicon (PS) is a promising material for label-free optical detection of biomolecules, though it currently suffers of limited clinical diagnostic applications due to insufficient sensitivity. In this regard, here we introduce an ultrasensitive and robust signal processing strategy for PS biosensors that relies on the calculation of the average value over wavelength of spectral interferograms, namely IAW, obtained on PS interferometer by subtraction (wavelength by wavelength) of reflection spectra acquired after adsorption of biomolecules inside the nanopores from a reference reflection spectrum recorded in acetate buffer. As a case study, we choose to monitor bovine serum albumin (BSA) unspecific adsorption, which has been often employed in the literature as a model for proof-of-concept studies of perspective biosensing applications. The proposed IAW signal processing strategy enables reliable detection of BSA at concentrations in the range from 150 pM to 15 μM (down to 3 orders of magnitude lower than those targeted in the current literature) using a PS interferometer operating in label-free mode without any amplification strategies, with good sample-to-sample reproducibility over the whole range of tested concentrations (%CV = 16% over 5 replicates) and good signal-to-noise ratio also at the lowest tested concentration (S/N ≈ 4.6 at 150 pM). A detection limit (DL) of 20 pM (20 femtomoles, 1 mL) is estimated from the sigmoidal function best fitting (R 2 = 0.989) IAW experimental data over the whole range of tested concentrations. This is the lowest DL that has been reported in the literature since the seminal paper of Sailor and co-workers (1997) on the use of PS interferometer for biosensing, and lowers of 4 orders of magnitude DL attained with label-free PS interferometers using conventional effective optical thickness (EOT) calculation through reflective interferometric Fourier transform spectroscopy. Accordingly, the IAW signal processing strategy envisage bringing PS optical transduction at the forefront of ultrasensitive label-free biosensing techniques, especially for point-of-care clinical analysis where low analyte concentrations have to be detected in a small amount of biological samples.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27479768</pmid><doi>10.1021/acs.analchem.6b01228</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2016-09, Vol.88 (17), p.8502-8509
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1845817570
source ACS Publications; MEDLINE
subjects Adsorption
Analytical chemistry
Animals
Biomolecules
Biosensing Techniques
Biosensors
Cattle
Interferometers
Mathematical models
Nanostructure
Nanostructured materials
Nanostructures - chemistry
Particle Size
Porosity
Serum Albumin, Bovine - analysis
Signal processing
Signal to noise ratio
Silicon
Silicon - chemistry
Strategy
Surface Properties
Wavelengths
title Femtomole Detection of Proteins Using a Label-Free Nanostructured Porous Silicon Interferometer for Perspective Ultrasensitive Biosensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Femtomole%20Detection%20of%20Proteins%20Using%20a%20Label-Free%20Nanostructured%20Porous%20Silicon%20Interferometer%20for%20Perspective%20Ultrasensitive%20Biosensing&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Mariani,%20Stefano&rft.date=2016-09-06&rft.volume=88&rft.issue=17&rft.spage=8502&rft.epage=8509&rft.pages=8502-8509&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b01228&rft_dat=%3Cproquest_cross%3E1817561711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1819439293&rft_id=info:pmid/27479768&rfr_iscdi=true