Femtomole Detection of Proteins Using a Label-Free Nanostructured Porous Silicon Interferometer for Perspective Ultrasensitive Biosensing
Nanostructured porous silicon (PS) is a promising material for label-free optical detection of biomolecules, though it currently suffers of limited clinical diagnostic applications due to insufficient sensitivity. In this regard, here we introduce an ultrasensitive and robust signal processing strat...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2016-09, Vol.88 (17), p.8502-8509 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8509 |
---|---|
container_issue | 17 |
container_start_page | 8502 |
container_title | Analytical chemistry (Washington) |
container_volume | 88 |
creator | Mariani, Stefano Strambini, Lucanos Marsilio Barillaro, Giuseppe |
description | Nanostructured porous silicon (PS) is a promising material for label-free optical detection of biomolecules, though it currently suffers of limited clinical diagnostic applications due to insufficient sensitivity. In this regard, here we introduce an ultrasensitive and robust signal processing strategy for PS biosensors that relies on the calculation of the average value over wavelength of spectral interferograms, namely IAW, obtained on PS interferometer by subtraction (wavelength by wavelength) of reflection spectra acquired after adsorption of biomolecules inside the nanopores from a reference reflection spectrum recorded in acetate buffer. As a case study, we choose to monitor bovine serum albumin (BSA) unspecific adsorption, which has been often employed in the literature as a model for proof-of-concept studies of perspective biosensing applications. The proposed IAW signal processing strategy enables reliable detection of BSA at concentrations in the range from 150 pM to 15 μM (down to 3 orders of magnitude lower than those targeted in the current literature) using a PS interferometer operating in label-free mode without any amplification strategies, with good sample-to-sample reproducibility over the whole range of tested concentrations (%CV = 16% over 5 replicates) and good signal-to-noise ratio also at the lowest tested concentration (S/N ≈ 4.6 at 150 pM). A detection limit (DL) of 20 pM (20 femtomoles, 1 mL) is estimated from the sigmoidal function best fitting (R 2 = 0.989) IAW experimental data over the whole range of tested concentrations. This is the lowest DL that has been reported in the literature since the seminal paper of Sailor and co-workers (1997) on the use of PS interferometer for biosensing, and lowers of 4 orders of magnitude DL attained with label-free PS interferometers using conventional effective optical thickness (EOT) calculation through reflective interferometric Fourier transform spectroscopy. Accordingly, the IAW signal processing strategy envisage bringing PS optical transduction at the forefront of ultrasensitive label-free biosensing techniques, especially for point-of-care clinical analysis where low analyte concentrations have to be detected in a small amount of biological samples. |
doi_str_mv | 10.1021/acs.analchem.6b01228 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845817570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1817561711</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525t-d714c05bc107b3332d955e23eaffb874307dc134688d6d8dd36817183ad3f1e43</originalsourceid><addsrcrecordid>eNqNkltrFDEYhoModq3-A5GAN72ZbQ6TSeZSq6uFRRd0r4dM8k1NmUnWJCP0J_ivzR6q0AvpVfjgeZ-cXoReU7KkhNFLbdJSez2aHzAtm55QxtQTtKCCkapRij1FC0IIr5gk5Ay9SOmWEEoJbZ6jMyZr2cpGLdDvFUw5TGEE_AEymOyCx2HAmxgyOJ_wNjl_gzVe6x7GahUB8BftQ8pxNnmOYPEmxDAn_M2NzpTwtc8QB4hhKr6IhxDxBmLa7d2_AG_HHHUCn9xhfO_CYfA3L9GzQY8JXp3Wc7Rdffx-9blaf_10ffVuXWnBRK6spLUhojeUyJ5zzmwrBDAOehh6JWtOpDWU1-UJbGOVtbxRVFLFteUDhZqfo4ujdxfDzxlS7iaXDIyj9lDu0VFVi5IQkjwCZbJljRSPsRZlUw5CC_r2AXob5lh-8kC1NW9ZywtVHykTQ0oRhm4X3aTjXUdJty9AVwrQ3RegOxWgxN6c5HM_gf0buv_xApAjsI__2_h_zj_x98Cn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819439293</pqid></control><display><type>article</type><title>Femtomole Detection of Proteins Using a Label-Free Nanostructured Porous Silicon Interferometer for Perspective Ultrasensitive Biosensing</title><source>ACS Publications</source><source>MEDLINE</source><creator>Mariani, Stefano ; Strambini, Lucanos Marsilio ; Barillaro, Giuseppe</creator><creatorcontrib>Mariani, Stefano ; Strambini, Lucanos Marsilio ; Barillaro, Giuseppe</creatorcontrib><description>Nanostructured porous silicon (PS) is a promising material for label-free optical detection of biomolecules, though it currently suffers of limited clinical diagnostic applications due to insufficient sensitivity. In this regard, here we introduce an ultrasensitive and robust signal processing strategy for PS biosensors that relies on the calculation of the average value over wavelength of spectral interferograms, namely IAW, obtained on PS interferometer by subtraction (wavelength by wavelength) of reflection spectra acquired after adsorption of biomolecules inside the nanopores from a reference reflection spectrum recorded in acetate buffer. As a case study, we choose to monitor bovine serum albumin (BSA) unspecific adsorption, which has been often employed in the literature as a model for proof-of-concept studies of perspective biosensing applications. The proposed IAW signal processing strategy enables reliable detection of BSA at concentrations in the range from 150 pM to 15 μM (down to 3 orders of magnitude lower than those targeted in the current literature) using a PS interferometer operating in label-free mode without any amplification strategies, with good sample-to-sample reproducibility over the whole range of tested concentrations (%CV = 16% over 5 replicates) and good signal-to-noise ratio also at the lowest tested concentration (S/N ≈ 4.6 at 150 pM). A detection limit (DL) of 20 pM (20 femtomoles, 1 mL) is estimated from the sigmoidal function best fitting (R 2 = 0.989) IAW experimental data over the whole range of tested concentrations. This is the lowest DL that has been reported in the literature since the seminal paper of Sailor and co-workers (1997) on the use of PS interferometer for biosensing, and lowers of 4 orders of magnitude DL attained with label-free PS interferometers using conventional effective optical thickness (EOT) calculation through reflective interferometric Fourier transform spectroscopy. Accordingly, the IAW signal processing strategy envisage bringing PS optical transduction at the forefront of ultrasensitive label-free biosensing techniques, especially for point-of-care clinical analysis where low analyte concentrations have to be detected in a small amount of biological samples.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b01228</identifier><identifier>PMID: 27479768</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Analytical chemistry ; Animals ; Biomolecules ; Biosensing Techniques ; Biosensors ; Cattle ; Interferometers ; Mathematical models ; Nanostructure ; Nanostructured materials ; Nanostructures - chemistry ; Particle Size ; Porosity ; Serum Albumin, Bovine - analysis ; Signal processing ; Signal to noise ratio ; Silicon ; Silicon - chemistry ; Strategy ; Surface Properties ; Wavelengths</subject><ispartof>Analytical chemistry (Washington), 2016-09, Vol.88 (17), p.8502-8509</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 6, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a525t-d714c05bc107b3332d955e23eaffb874307dc134688d6d8dd36817183ad3f1e43</citedby><cites>FETCH-LOGICAL-a525t-d714c05bc107b3332d955e23eaffb874307dc134688d6d8dd36817183ad3f1e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.6b01228$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.6b01228$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27479768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mariani, Stefano</creatorcontrib><creatorcontrib>Strambini, Lucanos Marsilio</creatorcontrib><creatorcontrib>Barillaro, Giuseppe</creatorcontrib><title>Femtomole Detection of Proteins Using a Label-Free Nanostructured Porous Silicon Interferometer for Perspective Ultrasensitive Biosensing</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Nanostructured porous silicon (PS) is a promising material for label-free optical detection of biomolecules, though it currently suffers of limited clinical diagnostic applications due to insufficient sensitivity. In this regard, here we introduce an ultrasensitive and robust signal processing strategy for PS biosensors that relies on the calculation of the average value over wavelength of spectral interferograms, namely IAW, obtained on PS interferometer by subtraction (wavelength by wavelength) of reflection spectra acquired after adsorption of biomolecules inside the nanopores from a reference reflection spectrum recorded in acetate buffer. As a case study, we choose to monitor bovine serum albumin (BSA) unspecific adsorption, which has been often employed in the literature as a model for proof-of-concept studies of perspective biosensing applications. The proposed IAW signal processing strategy enables reliable detection of BSA at concentrations in the range from 150 pM to 15 μM (down to 3 orders of magnitude lower than those targeted in the current literature) using a PS interferometer operating in label-free mode without any amplification strategies, with good sample-to-sample reproducibility over the whole range of tested concentrations (%CV = 16% over 5 replicates) and good signal-to-noise ratio also at the lowest tested concentration (S/N ≈ 4.6 at 150 pM). A detection limit (DL) of 20 pM (20 femtomoles, 1 mL) is estimated from the sigmoidal function best fitting (R 2 = 0.989) IAW experimental data over the whole range of tested concentrations. This is the lowest DL that has been reported in the literature since the seminal paper of Sailor and co-workers (1997) on the use of PS interferometer for biosensing, and lowers of 4 orders of magnitude DL attained with label-free PS interferometers using conventional effective optical thickness (EOT) calculation through reflective interferometric Fourier transform spectroscopy. Accordingly, the IAW signal processing strategy envisage bringing PS optical transduction at the forefront of ultrasensitive label-free biosensing techniques, especially for point-of-care clinical analysis where low analyte concentrations have to be detected in a small amount of biological samples.</description><subject>Adsorption</subject><subject>Analytical chemistry</subject><subject>Animals</subject><subject>Biomolecules</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Cattle</subject><subject>Interferometers</subject><subject>Mathematical models</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Nanostructures - chemistry</subject><subject>Particle Size</subject><subject>Porosity</subject><subject>Serum Albumin, Bovine - analysis</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Silicon</subject><subject>Silicon - chemistry</subject><subject>Strategy</subject><subject>Surface Properties</subject><subject>Wavelengths</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkltrFDEYhoModq3-A5GAN72ZbQ6TSeZSq6uFRRd0r4dM8k1NmUnWJCP0J_ivzR6q0AvpVfjgeZ-cXoReU7KkhNFLbdJSez2aHzAtm55QxtQTtKCCkapRij1FC0IIr5gk5Ay9SOmWEEoJbZ6jMyZr2cpGLdDvFUw5TGEE_AEymOyCx2HAmxgyOJ_wNjl_gzVe6x7GahUB8BftQ8pxNnmOYPEmxDAn_M2NzpTwtc8QB4hhKr6IhxDxBmLa7d2_AG_HHHUCn9xhfO_CYfA3L9GzQY8JXp3Wc7Rdffx-9blaf_10ffVuXWnBRK6spLUhojeUyJ5zzmwrBDAOehh6JWtOpDWU1-UJbGOVtbxRVFLFteUDhZqfo4ujdxfDzxlS7iaXDIyj9lDu0VFVi5IQkjwCZbJljRSPsRZlUw5CC_r2AXob5lh-8kC1NW9ZywtVHykTQ0oRhm4X3aTjXUdJty9AVwrQ3RegOxWgxN6c5HM_gf0buv_xApAjsI__2_h_zj_x98Cn</recordid><startdate>20160906</startdate><enddate>20160906</enddate><creator>Mariani, Stefano</creator><creator>Strambini, Lucanos Marsilio</creator><creator>Barillaro, Giuseppe</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20160906</creationdate><title>Femtomole Detection of Proteins Using a Label-Free Nanostructured Porous Silicon Interferometer for Perspective Ultrasensitive Biosensing</title><author>Mariani, Stefano ; Strambini, Lucanos Marsilio ; Barillaro, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525t-d714c05bc107b3332d955e23eaffb874307dc134688d6d8dd36817183ad3f1e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adsorption</topic><topic>Analytical chemistry</topic><topic>Animals</topic><topic>Biomolecules</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Cattle</topic><topic>Interferometers</topic><topic>Mathematical models</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Nanostructures - chemistry</topic><topic>Particle Size</topic><topic>Porosity</topic><topic>Serum Albumin, Bovine - analysis</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Silicon</topic><topic>Silicon - chemistry</topic><topic>Strategy</topic><topic>Surface Properties</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mariani, Stefano</creatorcontrib><creatorcontrib>Strambini, Lucanos Marsilio</creatorcontrib><creatorcontrib>Barillaro, Giuseppe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mariani, Stefano</au><au>Strambini, Lucanos Marsilio</au><au>Barillaro, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Femtomole Detection of Proteins Using a Label-Free Nanostructured Porous Silicon Interferometer for Perspective Ultrasensitive Biosensing</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2016-09-06</date><risdate>2016</risdate><volume>88</volume><issue>17</issue><spage>8502</spage><epage>8509</epage><pages>8502-8509</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Nanostructured porous silicon (PS) is a promising material for label-free optical detection of biomolecules, though it currently suffers of limited clinical diagnostic applications due to insufficient sensitivity. In this regard, here we introduce an ultrasensitive and robust signal processing strategy for PS biosensors that relies on the calculation of the average value over wavelength of spectral interferograms, namely IAW, obtained on PS interferometer by subtraction (wavelength by wavelength) of reflection spectra acquired after adsorption of biomolecules inside the nanopores from a reference reflection spectrum recorded in acetate buffer. As a case study, we choose to monitor bovine serum albumin (BSA) unspecific adsorption, which has been often employed in the literature as a model for proof-of-concept studies of perspective biosensing applications. The proposed IAW signal processing strategy enables reliable detection of BSA at concentrations in the range from 150 pM to 15 μM (down to 3 orders of magnitude lower than those targeted in the current literature) using a PS interferometer operating in label-free mode without any amplification strategies, with good sample-to-sample reproducibility over the whole range of tested concentrations (%CV = 16% over 5 replicates) and good signal-to-noise ratio also at the lowest tested concentration (S/N ≈ 4.6 at 150 pM). A detection limit (DL) of 20 pM (20 femtomoles, 1 mL) is estimated from the sigmoidal function best fitting (R 2 = 0.989) IAW experimental data over the whole range of tested concentrations. This is the lowest DL that has been reported in the literature since the seminal paper of Sailor and co-workers (1997) on the use of PS interferometer for biosensing, and lowers of 4 orders of magnitude DL attained with label-free PS interferometers using conventional effective optical thickness (EOT) calculation through reflective interferometric Fourier transform spectroscopy. Accordingly, the IAW signal processing strategy envisage bringing PS optical transduction at the forefront of ultrasensitive label-free biosensing techniques, especially for point-of-care clinical analysis where low analyte concentrations have to be detected in a small amount of biological samples.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27479768</pmid><doi>10.1021/acs.analchem.6b01228</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2016-09, Vol.88 (17), p.8502-8509 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845817570 |
source | ACS Publications; MEDLINE |
subjects | Adsorption Analytical chemistry Animals Biomolecules Biosensing Techniques Biosensors Cattle Interferometers Mathematical models Nanostructure Nanostructured materials Nanostructures - chemistry Particle Size Porosity Serum Albumin, Bovine - analysis Signal processing Signal to noise ratio Silicon Silicon - chemistry Strategy Surface Properties Wavelengths |
title | Femtomole Detection of Proteins Using a Label-Free Nanostructured Porous Silicon Interferometer for Perspective Ultrasensitive Biosensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Femtomole%20Detection%20of%20Proteins%20Using%20a%20Label-Free%20Nanostructured%20Porous%20Silicon%20Interferometer%20for%20Perspective%20Ultrasensitive%20Biosensing&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Mariani,%20Stefano&rft.date=2016-09-06&rft.volume=88&rft.issue=17&rft.spage=8502&rft.epage=8509&rft.pages=8502-8509&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b01228&rft_dat=%3Cproquest_cross%3E1817561711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1819439293&rft_id=info:pmid/27479768&rfr_iscdi=true |