Generalised rely-guarantee concurrency: an algebraic foundation
The rely-guarantee technique allows one to reason compositionally about concurrent programs. To handle interference the technique makes use of rely and guarantee conditions, both of which are binary relations on states. A rely condition is an assumption that the environment performs only atomic step...
Gespeichert in:
Veröffentlicht in: | Formal aspects of computing 2016-11, Vol.28 (6), p.1057-1078 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1078 |
---|---|
container_issue | 6 |
container_start_page | 1057 |
container_title | Formal aspects of computing |
container_volume | 28 |
creator | Hayes, Ian J. |
description | The rely-guarantee technique allows one to reason compositionally about concurrent programs. To handle interference the technique makes use of rely and guarantee conditions, both of which are binary relations on states. A rely condition is an assumption that the environment performs only atomic steps satisfying the rely relation and a guarantee is a commitment that every atomic step the program makes satisfies the guarantee relation. In order to investigate rely-guarantee reasoning more generally, in this paper we allow interference to be represented by a process rather than a relation and hence derive more general rely-guarantee laws. The paper makes use of a weak conjunction operator between processes, which generalises a guarantee relation to a guarantee process, and introduces a rely quotient operator, which generalises a rely relation to a process. The paper focuses on the algebraic properties of the general rely-guarantee theory. The Jones-style rely-guarantee theory can be interpreted as a model of the general algebraic theory and hence the general laws presented here hold for that theory. |
doi_str_mv | 10.1007/s00165-016-0384-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845815684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845815684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-5102a7b98582bf68cfb35b8d1f47b9dbd40c800a339af73776d90bcd84c10f3f3</originalsourceid><addsrcrecordid>eNp1kEFLAzEUhIMoWKs_wNuCFy_Rl02ym3gRKbUKBS8K3kKSTcqWbbYmu4f-e1PWgwhe5sHjm2EYhK4J3BGA-j4BkIrjLBioYBhO0IwwSnEp5ecpmoGkDHNg9BxdpLTNNJeEzNDjygUXddcm1xTRdQe8GXXUYXCusH2wY4wu2MNDoUOhu40zUbe28P0YGj20fbhEZ153yV393Dn6eF6-L17w-m31unhaY0uZHDAnUOraSMFFaXwlrDeUG9EQz_K3MQ0DKwA0pVL7mtZ11UgwthHMEvDU0zm6nXL3sf8aXRrUrk3WdZ0Orh-TIoJxQXglWEZv_qDbfowht8tUSWmVOxwpMlE29ilF59U-tjsdD4qAOk6qpklVFnWcNMsclZMnZTZsXPyV_K_pG5UeeHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1823365824</pqid></control><display><type>article</type><title>Generalised rely-guarantee concurrency: an algebraic foundation</title><source>SpringerNature Complete Journals</source><source>EZB Electronic Journals Library</source><creator>Hayes, Ian J.</creator><creatorcontrib>Hayes, Ian J.</creatorcontrib><description>The rely-guarantee technique allows one to reason compositionally about concurrent programs. To handle interference the technique makes use of rely and guarantee conditions, both of which are binary relations on states. A rely condition is an assumption that the environment performs only atomic steps satisfying the rely relation and a guarantee is a commitment that every atomic step the program makes satisfies the guarantee relation. In order to investigate rely-guarantee reasoning more generally, in this paper we allow interference to be represented by a process rather than a relation and hence derive more general rely-guarantee laws. The paper makes use of a weak conjunction operator between processes, which generalises a guarantee relation to a guarantee process, and introduces a rely quotient operator, which generalises a rely relation to a process. The paper focuses on the algebraic properties of the general rely-guarantee theory. The Jones-style rely-guarantee theory can be interpreted as a model of the general algebraic theory and hence the general laws presented here hold for that theory.</description><identifier>ISSN: 0934-5043</identifier><identifier>EISSN: 1433-299X</identifier><identifier>DOI: 10.1007/s00165-016-0384-0</identifier><identifier>CODEN: FACME5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algebra ; Computation ; Computer Science ; Concurrency ; Foundations ; Handles ; Interference ; Math Applications in Computer Science ; Operators ; Original Article ; Theory of Computation</subject><ispartof>Formal aspects of computing, 2016-11, Vol.28 (6), p.1057-1078</ispartof><rights>British Computer Society 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-5102a7b98582bf68cfb35b8d1f47b9dbd40c800a339af73776d90bcd84c10f3f3</citedby><cites>FETCH-LOGICAL-c349t-5102a7b98582bf68cfb35b8d1f47b9dbd40c800a339af73776d90bcd84c10f3f3</cites><orcidid>0000-0003-3649-392X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00165-016-0384-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00165-016-0384-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hayes, Ian J.</creatorcontrib><title>Generalised rely-guarantee concurrency: an algebraic foundation</title><title>Formal aspects of computing</title><addtitle>Form Asp Comp</addtitle><description>The rely-guarantee technique allows one to reason compositionally about concurrent programs. To handle interference the technique makes use of rely and guarantee conditions, both of which are binary relations on states. A rely condition is an assumption that the environment performs only atomic steps satisfying the rely relation and a guarantee is a commitment that every atomic step the program makes satisfies the guarantee relation. In order to investigate rely-guarantee reasoning more generally, in this paper we allow interference to be represented by a process rather than a relation and hence derive more general rely-guarantee laws. The paper makes use of a weak conjunction operator between processes, which generalises a guarantee relation to a guarantee process, and introduces a rely quotient operator, which generalises a rely relation to a process. The paper focuses on the algebraic properties of the general rely-guarantee theory. The Jones-style rely-guarantee theory can be interpreted as a model of the general algebraic theory and hence the general laws presented here hold for that theory.</description><subject>Algebra</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Concurrency</subject><subject>Foundations</subject><subject>Handles</subject><subject>Interference</subject><subject>Math Applications in Computer Science</subject><subject>Operators</subject><subject>Original Article</subject><subject>Theory of Computation</subject><issn>0934-5043</issn><issn>1433-299X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLAzEUhIMoWKs_wNuCFy_Rl02ym3gRKbUKBS8K3kKSTcqWbbYmu4f-e1PWgwhe5sHjm2EYhK4J3BGA-j4BkIrjLBioYBhO0IwwSnEp5ecpmoGkDHNg9BxdpLTNNJeEzNDjygUXddcm1xTRdQe8GXXUYXCusH2wY4wu2MNDoUOhu40zUbe28P0YGj20fbhEZ153yV393Dn6eF6-L17w-m31unhaY0uZHDAnUOraSMFFaXwlrDeUG9EQz_K3MQ0DKwA0pVL7mtZ11UgwthHMEvDU0zm6nXL3sf8aXRrUrk3WdZ0Orh-TIoJxQXglWEZv_qDbfowht8tUSWmVOxwpMlE29ilF59U-tjsdD4qAOk6qpklVFnWcNMsclZMnZTZsXPyV_K_pG5UeeHQ</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Hayes, Ian J.</creator><general>Springer London</general><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3649-392X</orcidid></search><sort><creationdate>20161101</creationdate><title>Generalised rely-guarantee concurrency: an algebraic foundation</title><author>Hayes, Ian J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-5102a7b98582bf68cfb35b8d1f47b9dbd40c800a339af73776d90bcd84c10f3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Concurrency</topic><topic>Foundations</topic><topic>Handles</topic><topic>Interference</topic><topic>Math Applications in Computer Science</topic><topic>Operators</topic><topic>Original Article</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayes, Ian J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Formal aspects of computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayes, Ian J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalised rely-guarantee concurrency: an algebraic foundation</atitle><jtitle>Formal aspects of computing</jtitle><stitle>Form Asp Comp</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>28</volume><issue>6</issue><spage>1057</spage><epage>1078</epage><pages>1057-1078</pages><issn>0934-5043</issn><eissn>1433-299X</eissn><coden>FACME5</coden><abstract>The rely-guarantee technique allows one to reason compositionally about concurrent programs. To handle interference the technique makes use of rely and guarantee conditions, both of which are binary relations on states. A rely condition is an assumption that the environment performs only atomic steps satisfying the rely relation and a guarantee is a commitment that every atomic step the program makes satisfies the guarantee relation. In order to investigate rely-guarantee reasoning more generally, in this paper we allow interference to be represented by a process rather than a relation and hence derive more general rely-guarantee laws. The paper makes use of a weak conjunction operator between processes, which generalises a guarantee relation to a guarantee process, and introduces a rely quotient operator, which generalises a rely relation to a process. The paper focuses on the algebraic properties of the general rely-guarantee theory. The Jones-style rely-guarantee theory can be interpreted as a model of the general algebraic theory and hence the general laws presented here hold for that theory.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00165-016-0384-0</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3649-392X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0934-5043 |
ispartof | Formal aspects of computing, 2016-11, Vol.28 (6), p.1057-1078 |
issn | 0934-5043 1433-299X |
language | eng |
recordid | cdi_proquest_miscellaneous_1845815684 |
source | SpringerNature Complete Journals; EZB Electronic Journals Library |
subjects | Algebra Computation Computer Science Concurrency Foundations Handles Interference Math Applications in Computer Science Operators Original Article Theory of Computation |
title | Generalised rely-guarantee concurrency: an algebraic foundation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A35%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalised%20rely-guarantee%20concurrency:%20an%20algebraic%20foundation&rft.jtitle=Formal%20aspects%20of%20computing&rft.au=Hayes,%20Ian%20J.&rft.date=2016-11-01&rft.volume=28&rft.issue=6&rft.spage=1057&rft.epage=1078&rft.pages=1057-1078&rft.issn=0934-5043&rft.eissn=1433-299X&rft.coden=FACME5&rft_id=info:doi/10.1007/s00165-016-0384-0&rft_dat=%3Cproquest_cross%3E1845815684%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1823365824&rft_id=info:pmid/&rfr_iscdi=true |