Phase composition, morphology and element contents of micro-arc oxidation ceramic coatings on Ti-6Al-4V alloy under different calcination conditions
Compound ceramic coatings with the main crystalline of Al_2TiO_5(in the as-prepared coating without treatment) were prepared in situ on the surface Ti-6Al-4V alloy by means of pulsed bipolar micro-arc oxidation in Na AlO_2 solution. For the purpose of studying the antioxidation properties of the sam...
Gespeichert in:
Veröffentlicht in: | Rare metals 2016-11, Vol.35 (11), p.836-840 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 840 |
---|---|
container_issue | 11 |
container_start_page | 836 |
container_title | Rare metals |
container_volume | 35 |
creator | Hao, Guo-Dong Hao, Xue-long Zhu, Zu-Fang |
description | Compound ceramic coatings with the main crystalline of Al_2TiO_5(in the as-prepared coating without treatment) were prepared in situ on the surface Ti-6Al-4V alloy by means of pulsed bipolar micro-arc oxidation in Na AlO_2 solution. For the purpose of studying the antioxidation properties of the samples, the coated samples treated in argon and the as-coated samples were calcined in air at 1000 °C. And the related characteristics were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM) and X-ray fluorescence(XRF) spectroscopy, respectively. The results show that, when it was calcined in air for 1 h, Al_2TiO_5in the as-prepared coating decomposed and transformed into α-Al_2O_3 and rutile TiO_2.However, after almost 4 h in argon, Al_2TiO_5in the asprepared coating decomposed and the final coating surface contents are completely α-Al_2O_3, and those of the middle interface are mainly Al_2O_3 and Ti_2O_3. The morphologies of the coatings after calcination in argon and air are different.High-temperature oxidation occurred violently in the alloy substrate without coatings. Furthermore, the weight gain curves of the as-prepared samples and the coated samples treated in argon both show a parabolic shape. |
doi_str_mv | 10.1007/s12598-016-0795-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845812629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>670699940</cqvip_id><sourcerecordid>4211231851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-87154dce7f59f6a71f3178559e7222065ee23357555cbebe72c9b54231cfa723</originalsourceid><addsrcrecordid>eNp9kc9qGzEQxpfQQtK0D5CbSC89VK3-rKTVMYS0DQTSg-lVyNqRraCVHGkN8Xv0gSPHpoQechpp-H3fDPN13QUl3ygh6nulTOgBEyoxUVpgftKd0UEqrOgg3rU3IRQTwehp96HWB0L6Xkpy1v39vbYVkMvTJtcwh5y-oimXzTrHvNohm0YEESZIc2PS3GpF2aMpuJKxLQ7lpzDavQ45KLb1G9f-adW4hBYBy6uI-z_Ixph3aJtGKGgM3kN58bTRhXTU5zS-bFA_du-9jRU-Het5t_hxs7j-he_uf95eX91hx5Wc8aCo6EcHygvtpVXUc6oGITQoxhiRAoBxLpQQwi1h2bpOL0XPOHXeKsbPuy8H203Jj1uos5lCdRCjTZC31dChFwNlkumGfv4PfcjbktpyjWJq4JQp0Sh6oNpxai3gzaaEyZadocTsYzKHmEyLyexjMrxp2EFTG5tWUF45vyG6PA5a57R6bLp_k6QiUmvdE_4MnBiiJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1827831275</pqid></control><display><type>article</type><title>Phase composition, morphology and element contents of micro-arc oxidation ceramic coatings on Ti-6Al-4V alloy under different calcination conditions</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Hao, Guo-Dong ; Hao, Xue-long ; Zhu, Zu-Fang</creator><creatorcontrib>Hao, Guo-Dong ; Hao, Xue-long ; Zhu, Zu-Fang</creatorcontrib><description>Compound ceramic coatings with the main crystalline of Al_2TiO_5(in the as-prepared coating without treatment) were prepared in situ on the surface Ti-6Al-4V alloy by means of pulsed bipolar micro-arc oxidation in Na AlO_2 solution. For the purpose of studying the antioxidation properties of the samples, the coated samples treated in argon and the as-coated samples were calcined in air at 1000 °C. And the related characteristics were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM) and X-ray fluorescence(XRF) spectroscopy, respectively. The results show that, when it was calcined in air for 1 h, Al_2TiO_5in the as-prepared coating decomposed and transformed into α-Al_2O_3 and rutile TiO_2.However, after almost 4 h in argon, Al_2TiO_5in the asprepared coating decomposed and the final coating surface contents are completely α-Al_2O_3, and those of the middle interface are mainly Al_2O_3 and Ti_2O_3. The morphologies of the coatings after calcination in argon and air are different.High-temperature oxidation occurred violently in the alloy substrate without coatings. Furthermore, the weight gain curves of the as-prepared samples and the coated samples treated in argon both show a parabolic shape.</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-016-0795-3</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Alloying elements ; Aluminum oxide ; Aluminum titanates ; Argon ; Biomaterials ; Calcination ; Ceramic coatings ; Ceramic glazes ; Chemistry and Materials Science ; Coating ; Decomposition ; Energy ; Heat resistant alloys ; High temperature ; Materials Engineering ; Materials Science ; Metallic Materials ; Morphology ; Nanoscale Science and Technology ; Nonferrous metals ; Oxidation ; Phase composition ; Physical Chemistry ; Protective coatings ; Roasting ; Scanning electron microscopy ; Sodium aluminate ; Substrates ; Titanium alloys ; Titanium base alloys ; Titanium dioxide ; Titanium oxides ; X-ray fluorescence</subject><ispartof>Rare metals, 2016-11, Vol.35 (11), p.836-840</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-87154dce7f59f6a71f3178559e7222065ee23357555cbebe72c9b54231cfa723</citedby><cites>FETCH-LOGICAL-c376t-87154dce7f59f6a71f3178559e7222065ee23357555cbebe72c9b54231cfa723</cites><orcidid>0000-0001-6853-6731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85314X/85314X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-016-0795-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-016-0795-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hao, Guo-Dong</creatorcontrib><creatorcontrib>Hao, Xue-long</creatorcontrib><creatorcontrib>Zhu, Zu-Fang</creatorcontrib><title>Phase composition, morphology and element contents of micro-arc oxidation ceramic coatings on Ti-6Al-4V alloy under different calcination conditions</title><title>Rare metals</title><addtitle>Rare Met</addtitle><addtitle>Rare Metals</addtitle><description>Compound ceramic coatings with the main crystalline of Al_2TiO_5(in the as-prepared coating without treatment) were prepared in situ on the surface Ti-6Al-4V alloy by means of pulsed bipolar micro-arc oxidation in Na AlO_2 solution. For the purpose of studying the antioxidation properties of the samples, the coated samples treated in argon and the as-coated samples were calcined in air at 1000 °C. And the related characteristics were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM) and X-ray fluorescence(XRF) spectroscopy, respectively. The results show that, when it was calcined in air for 1 h, Al_2TiO_5in the as-prepared coating decomposed and transformed into α-Al_2O_3 and rutile TiO_2.However, after almost 4 h in argon, Al_2TiO_5in the asprepared coating decomposed and the final coating surface contents are completely α-Al_2O_3, and those of the middle interface are mainly Al_2O_3 and Ti_2O_3. The morphologies of the coatings after calcination in argon and air are different.High-temperature oxidation occurred violently in the alloy substrate without coatings. Furthermore, the weight gain curves of the as-prepared samples and the coated samples treated in argon both show a parabolic shape.</description><subject>Alloying elements</subject><subject>Aluminum oxide</subject><subject>Aluminum titanates</subject><subject>Argon</subject><subject>Biomaterials</subject><subject>Calcination</subject><subject>Ceramic coatings</subject><subject>Ceramic glazes</subject><subject>Chemistry and Materials Science</subject><subject>Coating</subject><subject>Decomposition</subject><subject>Energy</subject><subject>Heat resistant alloys</subject><subject>High temperature</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Morphology</subject><subject>Nanoscale Science and Technology</subject><subject>Nonferrous metals</subject><subject>Oxidation</subject><subject>Phase composition</subject><subject>Physical Chemistry</subject><subject>Protective coatings</subject><subject>Roasting</subject><subject>Scanning electron microscopy</subject><subject>Sodium aluminate</subject><subject>Substrates</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Titanium dioxide</subject><subject>Titanium oxides</subject><subject>X-ray fluorescence</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc9qGzEQxpfQQtK0D5CbSC89VK3-rKTVMYS0DQTSg-lVyNqRraCVHGkN8Xv0gSPHpoQechpp-H3fDPN13QUl3ygh6nulTOgBEyoxUVpgftKd0UEqrOgg3rU3IRQTwehp96HWB0L6Xkpy1v39vbYVkMvTJtcwh5y-oimXzTrHvNohm0YEESZIc2PS3GpF2aMpuJKxLQ7lpzDavQ45KLb1G9f-adW4hBYBy6uI-z_Ixph3aJtGKGgM3kN58bTRhXTU5zS-bFA_du-9jRU-Het5t_hxs7j-he_uf95eX91hx5Wc8aCo6EcHygvtpVXUc6oGITQoxhiRAoBxLpQQwi1h2bpOL0XPOHXeKsbPuy8H203Jj1uos5lCdRCjTZC31dChFwNlkumGfv4PfcjbktpyjWJq4JQp0Sh6oNpxai3gzaaEyZadocTsYzKHmEyLyexjMrxp2EFTG5tWUF45vyG6PA5a57R6bLp_k6QiUmvdE_4MnBiiJA</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Hao, Guo-Dong</creator><creator>Hao, Xue-long</creator><creator>Zhu, Zu-Fang</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7QF</scope><scope>7SE</scope><orcidid>https://orcid.org/0000-0001-6853-6731</orcidid></search><sort><creationdate>20161101</creationdate><title>Phase composition, morphology and element contents of micro-arc oxidation ceramic coatings on Ti-6Al-4V alloy under different calcination conditions</title><author>Hao, Guo-Dong ; Hao, Xue-long ; Zhu, Zu-Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-87154dce7f59f6a71f3178559e7222065ee23357555cbebe72c9b54231cfa723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alloying elements</topic><topic>Aluminum oxide</topic><topic>Aluminum titanates</topic><topic>Argon</topic><topic>Biomaterials</topic><topic>Calcination</topic><topic>Ceramic coatings</topic><topic>Ceramic glazes</topic><topic>Chemistry and Materials Science</topic><topic>Coating</topic><topic>Decomposition</topic><topic>Energy</topic><topic>Heat resistant alloys</topic><topic>High temperature</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Morphology</topic><topic>Nanoscale Science and Technology</topic><topic>Nonferrous metals</topic><topic>Oxidation</topic><topic>Phase composition</topic><topic>Physical Chemistry</topic><topic>Protective coatings</topic><topic>Roasting</topic><topic>Scanning electron microscopy</topic><topic>Sodium aluminate</topic><topic>Substrates</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Titanium dioxide</topic><topic>Titanium oxides</topic><topic>X-ray fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Guo-Dong</creatorcontrib><creatorcontrib>Hao, Xue-long</creatorcontrib><creatorcontrib>Zhu, Zu-Fang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Aluminium Industry Abstracts</collection><collection>Corrosion Abstracts</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Guo-Dong</au><au>Hao, Xue-long</au><au>Zhu, Zu-Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase composition, morphology and element contents of micro-arc oxidation ceramic coatings on Ti-6Al-4V alloy under different calcination conditions</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><addtitle>Rare Metals</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>35</volume><issue>11</issue><spage>836</spage><epage>840</epage><pages>836-840</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>Compound ceramic coatings with the main crystalline of Al_2TiO_5(in the as-prepared coating without treatment) were prepared in situ on the surface Ti-6Al-4V alloy by means of pulsed bipolar micro-arc oxidation in Na AlO_2 solution. For the purpose of studying the antioxidation properties of the samples, the coated samples treated in argon and the as-coated samples were calcined in air at 1000 °C. And the related characteristics were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM) and X-ray fluorescence(XRF) spectroscopy, respectively. The results show that, when it was calcined in air for 1 h, Al_2TiO_5in the as-prepared coating decomposed and transformed into α-Al_2O_3 and rutile TiO_2.However, after almost 4 h in argon, Al_2TiO_5in the asprepared coating decomposed and the final coating surface contents are completely α-Al_2O_3, and those of the middle interface are mainly Al_2O_3 and Ti_2O_3. The morphologies of the coatings after calcination in argon and air are different.High-temperature oxidation occurred violently in the alloy substrate without coatings. Furthermore, the weight gain curves of the as-prepared samples and the coated samples treated in argon both show a parabolic shape.</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-016-0795-3</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6853-6731</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2016-11, Vol.35 (11), p.836-840 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845812629 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Alloying elements Aluminum oxide Aluminum titanates Argon Biomaterials Calcination Ceramic coatings Ceramic glazes Chemistry and Materials Science Coating Decomposition Energy Heat resistant alloys High temperature Materials Engineering Materials Science Metallic Materials Morphology Nanoscale Science and Technology Nonferrous metals Oxidation Phase composition Physical Chemistry Protective coatings Roasting Scanning electron microscopy Sodium aluminate Substrates Titanium alloys Titanium base alloys Titanium dioxide Titanium oxides X-ray fluorescence |
title | Phase composition, morphology and element contents of micro-arc oxidation ceramic coatings on Ti-6Al-4V alloy under different calcination conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20composition,%20morphology%20and%20element%20contents%20of%20micro-arc%20oxidation%20ceramic%20coatings%20on%20Ti-6Al-4V%20alloy%20under%20different%20calcination%20conditions&rft.jtitle=Rare%20metals&rft.au=Hao,%20Guo-Dong&rft.date=2016-11-01&rft.volume=35&rft.issue=11&rft.spage=836&rft.epage=840&rft.pages=836-840&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-016-0795-3&rft_dat=%3Cproquest_cross%3E4211231851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1827831275&rft_id=info:pmid/&rft_cqvip_id=670699940&rfr_iscdi=true |