Enhancing the crashworthiness of high-manganese steel by strain-hardening engineering, and tailored folding by local heat-treatment

High-manganese twinning induced plasticity steels are a promising alternative for enhancing crashworthiness in automobiles due to their combined high strength and ductility. In this work, we argue that their so-called exceptional tensile strength and ductility are not directly relevant from a compon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials & design 2016-11, Vol.110, p.157-168
Hauptverfasser: Bambach, Markus, Conrads, Laura, Daamen, Markus, Güvenç, Onur, Hirt, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 168
container_issue
container_start_page 157
container_title Materials & design
container_volume 110
creator Bambach, Markus
Conrads, Laura
Daamen, Markus
Güvenç, Onur
Hirt, Gerhard
description High-manganese twinning induced plasticity steels are a promising alternative for enhancing crashworthiness in automobiles due to their combined high strength and ductility. In this work, we argue that their so-called exceptional tensile strength and ductility are not directly relevant from a component design perspective, but those properties enable tailoring the material response for a given requirement. For this purpose, we compared their crashworthiness with that of an industrial grade steel via drop-tower test. The industrial grade steel performed better although the conventional metrics of crashworthiness predicted otherwise. Then, the crucial effect of strain hardening on the mechanical response of the high-manganese steels is represented by applying two completely different strain-hardening engineering strategies: Recovery annealing and tailored folding. Both approaches enabled high-manganese steel samples to outperform the industrial steel grade ones. Finally, we introduce a new energy absorption metric based on the plastic deformation energy and the deformation volume in order to assess the benefits of the introduced approaches. [Display omitted] •Crash performance of TWIP steels are compared with DP800 industrial steel.•The superior properties of TWIP steels based on tensile data do not infer superior crash performance.•New performance metric is defined for crashworthiness.•Two novel processing strategies improved the performance of TWIP steel crash boxes.
doi_str_mv 10.1016/j.matdes.2016.07.065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845806990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0264127516309637</els_id><sourcerecordid>1845806990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-e8fd6125ed14e5af3724b1d085da00a13ce4aa641bdb8b084592ee5e9cdecfbe3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gYssXdiatOlrI4j4ggE3ug63ye00Q5toklFc-8dNGddu7ovzHbiHkAvOcs54fb3NZ4gaQ16kLWdNzurqgKx425SZ4F1zSFasqEXGi6Y6JichbBkriqYUK_Jzb0ewytgNjSNS5SGMX87H0VgMgbqBjmYzZjPYDaQL0hARJ9p_p8GDsdkIXqNdeLSbBKFP8xUFq2kEMzmPmg5u0osiUZNTMNERIWbRpzqjjWfkaIAp4PlfPyVvD_evd0_Z-uXx-e52namy7GKG7aBrXlSoucAKhrIpRM81aysNjAEvFQqAWvBe923PWlF1BWKFndKohh7LU3K593337mOHIcrZBIXTlD5zuyB5QlpWdx1LUrGXKu9C8DjId29m8N-SM7lkLrdyn7lcMpeskSnzhN3sMUxvfBr0MiiDVqE2HlWU2pn_DX4B9xaQmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845806990</pqid></control><display><type>article</type><title>Enhancing the crashworthiness of high-manganese steel by strain-hardening engineering, and tailored folding by local heat-treatment</title><source>Alma/SFX Local Collection</source><creator>Bambach, Markus ; Conrads, Laura ; Daamen, Markus ; Güvenç, Onur ; Hirt, Gerhard</creator><creatorcontrib>Bambach, Markus ; Conrads, Laura ; Daamen, Markus ; Güvenç, Onur ; Hirt, Gerhard</creatorcontrib><description>High-manganese twinning induced plasticity steels are a promising alternative for enhancing crashworthiness in automobiles due to their combined high strength and ductility. In this work, we argue that their so-called exceptional tensile strength and ductility are not directly relevant from a component design perspective, but those properties enable tailoring the material response for a given requirement. For this purpose, we compared their crashworthiness with that of an industrial grade steel via drop-tower test. The industrial grade steel performed better although the conventional metrics of crashworthiness predicted otherwise. Then, the crucial effect of strain hardening on the mechanical response of the high-manganese steels is represented by applying two completely different strain-hardening engineering strategies: Recovery annealing and tailored folding. Both approaches enabled high-manganese steel samples to outperform the industrial steel grade ones. Finally, we introduce a new energy absorption metric based on the plastic deformation energy and the deformation volume in order to assess the benefits of the introduced approaches. [Display omitted] •Crash performance of TWIP steels are compared with DP800 industrial steel.•The superior properties of TWIP steels based on tensile data do not infer superior crash performance.•New performance metric is defined for crashworthiness.•Two novel processing strategies improved the performance of TWIP steel crash boxes.</description><identifier>ISSN: 0264-1275</identifier><identifier>EISSN: 1873-4197</identifier><identifier>DOI: 10.1016/j.matdes.2016.07.065</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automotive components ; Crashworthiness ; Design engineering ; Folding ; Heat treatment ; Impact strength ; Laser heat treatment ; Recovery annealing ; Strain hardening ; Strain-hardening engineering ; Structural steels ; Tailored folding ; TWIP steel</subject><ispartof>Materials &amp; design, 2016-11, Vol.110, p.157-168</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-e8fd6125ed14e5af3724b1d085da00a13ce4aa641bdb8b084592ee5e9cdecfbe3</citedby><cites>FETCH-LOGICAL-c339t-e8fd6125ed14e5af3724b1d085da00a13ce4aa641bdb8b084592ee5e9cdecfbe3</cites><orcidid>0000-0002-0130-2858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bambach, Markus</creatorcontrib><creatorcontrib>Conrads, Laura</creatorcontrib><creatorcontrib>Daamen, Markus</creatorcontrib><creatorcontrib>Güvenç, Onur</creatorcontrib><creatorcontrib>Hirt, Gerhard</creatorcontrib><title>Enhancing the crashworthiness of high-manganese steel by strain-hardening engineering, and tailored folding by local heat-treatment</title><title>Materials &amp; design</title><description>High-manganese twinning induced plasticity steels are a promising alternative for enhancing crashworthiness in automobiles due to their combined high strength and ductility. In this work, we argue that their so-called exceptional tensile strength and ductility are not directly relevant from a component design perspective, but those properties enable tailoring the material response for a given requirement. For this purpose, we compared their crashworthiness with that of an industrial grade steel via drop-tower test. The industrial grade steel performed better although the conventional metrics of crashworthiness predicted otherwise. Then, the crucial effect of strain hardening on the mechanical response of the high-manganese steels is represented by applying two completely different strain-hardening engineering strategies: Recovery annealing and tailored folding. Both approaches enabled high-manganese steel samples to outperform the industrial steel grade ones. Finally, we introduce a new energy absorption metric based on the plastic deformation energy and the deformation volume in order to assess the benefits of the introduced approaches. [Display omitted] •Crash performance of TWIP steels are compared with DP800 industrial steel.•The superior properties of TWIP steels based on tensile data do not infer superior crash performance.•New performance metric is defined for crashworthiness.•Two novel processing strategies improved the performance of TWIP steel crash boxes.</description><subject>Automotive components</subject><subject>Crashworthiness</subject><subject>Design engineering</subject><subject>Folding</subject><subject>Heat treatment</subject><subject>Impact strength</subject><subject>Laser heat treatment</subject><subject>Recovery annealing</subject><subject>Strain hardening</subject><subject>Strain-hardening engineering</subject><subject>Structural steels</subject><subject>Tailored folding</subject><subject>TWIP steel</subject><issn>0264-1275</issn><issn>1873-4197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gYssXdiatOlrI4j4ggE3ug63ye00Q5toklFc-8dNGddu7ovzHbiHkAvOcs54fb3NZ4gaQ16kLWdNzurqgKx425SZ4F1zSFasqEXGi6Y6JichbBkriqYUK_Jzb0ewytgNjSNS5SGMX87H0VgMgbqBjmYzZjPYDaQL0hARJ9p_p8GDsdkIXqNdeLSbBKFP8xUFq2kEMzmPmg5u0osiUZNTMNERIWbRpzqjjWfkaIAp4PlfPyVvD_evd0_Z-uXx-e52namy7GKG7aBrXlSoucAKhrIpRM81aysNjAEvFQqAWvBe923PWlF1BWKFndKohh7LU3K593337mOHIcrZBIXTlD5zuyB5QlpWdx1LUrGXKu9C8DjId29m8N-SM7lkLrdyn7lcMpeskSnzhN3sMUxvfBr0MiiDVqE2HlWU2pn_DX4B9xaQmQ</recordid><startdate>20161115</startdate><enddate>20161115</enddate><creator>Bambach, Markus</creator><creator>Conrads, Laura</creator><creator>Daamen, Markus</creator><creator>Güvenç, Onur</creator><creator>Hirt, Gerhard</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0130-2858</orcidid></search><sort><creationdate>20161115</creationdate><title>Enhancing the crashworthiness of high-manganese steel by strain-hardening engineering, and tailored folding by local heat-treatment</title><author>Bambach, Markus ; Conrads, Laura ; Daamen, Markus ; Güvenç, Onur ; Hirt, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-e8fd6125ed14e5af3724b1d085da00a13ce4aa641bdb8b084592ee5e9cdecfbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automotive components</topic><topic>Crashworthiness</topic><topic>Design engineering</topic><topic>Folding</topic><topic>Heat treatment</topic><topic>Impact strength</topic><topic>Laser heat treatment</topic><topic>Recovery annealing</topic><topic>Strain hardening</topic><topic>Strain-hardening engineering</topic><topic>Structural steels</topic><topic>Tailored folding</topic><topic>TWIP steel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bambach, Markus</creatorcontrib><creatorcontrib>Conrads, Laura</creatorcontrib><creatorcontrib>Daamen, Markus</creatorcontrib><creatorcontrib>Güvenç, Onur</creatorcontrib><creatorcontrib>Hirt, Gerhard</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bambach, Markus</au><au>Conrads, Laura</au><au>Daamen, Markus</au><au>Güvenç, Onur</au><au>Hirt, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the crashworthiness of high-manganese steel by strain-hardening engineering, and tailored folding by local heat-treatment</atitle><jtitle>Materials &amp; design</jtitle><date>2016-11-15</date><risdate>2016</risdate><volume>110</volume><spage>157</spage><epage>168</epage><pages>157-168</pages><issn>0264-1275</issn><eissn>1873-4197</eissn><abstract>High-manganese twinning induced plasticity steels are a promising alternative for enhancing crashworthiness in automobiles due to their combined high strength and ductility. In this work, we argue that their so-called exceptional tensile strength and ductility are not directly relevant from a component design perspective, but those properties enable tailoring the material response for a given requirement. For this purpose, we compared their crashworthiness with that of an industrial grade steel via drop-tower test. The industrial grade steel performed better although the conventional metrics of crashworthiness predicted otherwise. Then, the crucial effect of strain hardening on the mechanical response of the high-manganese steels is represented by applying two completely different strain-hardening engineering strategies: Recovery annealing and tailored folding. Both approaches enabled high-manganese steel samples to outperform the industrial steel grade ones. Finally, we introduce a new energy absorption metric based on the plastic deformation energy and the deformation volume in order to assess the benefits of the introduced approaches. [Display omitted] •Crash performance of TWIP steels are compared with DP800 industrial steel.•The superior properties of TWIP steels based on tensile data do not infer superior crash performance.•New performance metric is defined for crashworthiness.•Two novel processing strategies improved the performance of TWIP steel crash boxes.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.matdes.2016.07.065</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0130-2858</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0264-1275
ispartof Materials & design, 2016-11, Vol.110, p.157-168
issn 0264-1275
1873-4197
language eng
recordid cdi_proquest_miscellaneous_1845806990
source Alma/SFX Local Collection
subjects Automotive components
Crashworthiness
Design engineering
Folding
Heat treatment
Impact strength
Laser heat treatment
Recovery annealing
Strain hardening
Strain-hardening engineering
Structural steels
Tailored folding
TWIP steel
title Enhancing the crashworthiness of high-manganese steel by strain-hardening engineering, and tailored folding by local heat-treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20crashworthiness%20of%20high-manganese%20steel%20by%20strain-hardening%20engineering,%20and%20tailored%20folding%20by%20local%20heat-treatment&rft.jtitle=Materials%20&%20design&rft.au=Bambach,%20Markus&rft.date=2016-11-15&rft.volume=110&rft.spage=157&rft.epage=168&rft.pages=157-168&rft.issn=0264-1275&rft.eissn=1873-4197&rft_id=info:doi/10.1016/j.matdes.2016.07.065&rft_dat=%3Cproquest_cross%3E1845806990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845806990&rft_id=info:pmid/&rft_els_id=S0264127516309637&rfr_iscdi=true