Modeling of Correlated Two-Dimensional Non-Gaussian Noises

The article describes and analyzes mathematical models of multiplicative and additive non-Gaussian noises affecting the useful signals. For synthesis and analysis, and, hence, the effective design of information systems and radio devices operating in conditions of intense perturbations it is necessa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modern applied science 2015-08, Vol.9 (8), p.300-300
Hauptverfasser: Mikhailovich Artuschenko, Vladimir, Leonidovich Samarov, Kim, Petrovich Golubev, Andrey, Yurievich Shchikanov, Aleksey, Sergeevich Kochetkov, Aleksey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue 8
container_start_page 300
container_title Modern applied science
container_volume 9
creator Mikhailovich Artuschenko, Vladimir
Leonidovich Samarov, Kim
Petrovich Golubev, Andrey
Yurievich Shchikanov, Aleksey
Sergeevich Kochetkov, Aleksey
description The article describes and analyzes mathematical models of multiplicative and additive non-Gaussian noises affecting the useful signals. For synthesis and analysis, and, hence, the effective design of information systems and radio devices operating in conditions of intense perturbations it is necessary to choose not only the adequate mathematical model of the useful signals and information processes, but also the corresponding models of random effects, possessing in general non-Gaussian multiplicative and additive character. To describe the arbitrary non-Gaussian noises, the authors used a two-dimensional elliptic symmetric probability density function, including two extreme cases: Gaussian processes and a sinusoidal signal with random initial phase distributed uniformly in the interval. To describe the real density of probability density function of the non-Gaussian process, the authors propose to approximate its priori known as one-dimensional probability density function and a specially designed transitional probability density function, and show the adequacy of this approximation of the real two-dimensional probability density function of correlated noises.
doi_str_mv 10.5539/mas.v9n8p300
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845805484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845805484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c704-c4900dba31a5e71487048a3c807111a2d3d1c99c34d8a5c7ad2aaa78258540dc3</originalsourceid><addsrcrecordid>eNo9kMFKxDAQhoMouK7efIAePdg1aRKbeJOqq7DqpfcwJqlE2qRmtopvb2XV0z__8DEwHyGnjK6k5PpiAFx96KhGTukeWTDNeMmUrPb_ZyEOyRHiG6WXleZ6Qa4ek_N9iK9F6oom5ex72HpXtJ-pvAmDjxhShL54SrFcw4QYIM4loMdjctBBj_7kN5ekvbttm_ty87x-aK43pa2pKK3QlLoX4Aykr5lQ81IBt4rWjDGoHHfMam25cAqkrcFVAFCrSiopqLN8Sc52Z8ec3iePWzMEtL7vIfo0oZmfkopKocSMnu9QmxNi9p0ZcxggfxlGzY8hMxsyf4b4NyX_WX0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845805484</pqid></control><display><type>article</type><title>Modeling of Correlated Two-Dimensional Non-Gaussian Noises</title><source>Full-Text Journals in Chemistry (Open access)</source><source>EZB Electronic Journals Library</source><creator>Mikhailovich Artuschenko, Vladimir ; Leonidovich Samarov, Kim ; Petrovich Golubev, Andrey ; Yurievich Shchikanov, Aleksey ; Sergeevich Kochetkov, Aleksey</creator><creatorcontrib>Mikhailovich Artuschenko, Vladimir ; Leonidovich Samarov, Kim ; Petrovich Golubev, Andrey ; Yurievich Shchikanov, Aleksey ; Sergeevich Kochetkov, Aleksey</creatorcontrib><description>The article describes and analyzes mathematical models of multiplicative and additive non-Gaussian noises affecting the useful signals. For synthesis and analysis, and, hence, the effective design of information systems and radio devices operating in conditions of intense perturbations it is necessary to choose not only the adequate mathematical model of the useful signals and information processes, but also the corresponding models of random effects, possessing in general non-Gaussian multiplicative and additive character. To describe the arbitrary non-Gaussian noises, the authors used a two-dimensional elliptic symmetric probability density function, including two extreme cases: Gaussian processes and a sinusoidal signal with random initial phase distributed uniformly in the interval. To describe the real density of probability density function of the non-Gaussian process, the authors propose to approximate its priori known as one-dimensional probability density function and a specially designed transitional probability density function, and show the adequacy of this approximation of the real two-dimensional probability density function of correlated noises.</description><identifier>ISSN: 1913-1844</identifier><identifier>EISSN: 1913-1852</identifier><identifier>DOI: 10.5539/mas.v9n8p300</identifier><language>eng</language><subject>Additives ; Approximation ; Correlation ; Devices ; Mathematical models ; Noise ; Probability density functions ; Signal processing</subject><ispartof>Modern applied science, 2015-08, Vol.9 (8), p.300-300</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mikhailovich Artuschenko, Vladimir</creatorcontrib><creatorcontrib>Leonidovich Samarov, Kim</creatorcontrib><creatorcontrib>Petrovich Golubev, Andrey</creatorcontrib><creatorcontrib>Yurievich Shchikanov, Aleksey</creatorcontrib><creatorcontrib>Sergeevich Kochetkov, Aleksey</creatorcontrib><title>Modeling of Correlated Two-Dimensional Non-Gaussian Noises</title><title>Modern applied science</title><description>The article describes and analyzes mathematical models of multiplicative and additive non-Gaussian noises affecting the useful signals. For synthesis and analysis, and, hence, the effective design of information systems and radio devices operating in conditions of intense perturbations it is necessary to choose not only the adequate mathematical model of the useful signals and information processes, but also the corresponding models of random effects, possessing in general non-Gaussian multiplicative and additive character. To describe the arbitrary non-Gaussian noises, the authors used a two-dimensional elliptic symmetric probability density function, including two extreme cases: Gaussian processes and a sinusoidal signal with random initial phase distributed uniformly in the interval. To describe the real density of probability density function of the non-Gaussian process, the authors propose to approximate its priori known as one-dimensional probability density function and a specially designed transitional probability density function, and show the adequacy of this approximation of the real two-dimensional probability density function of correlated noises.</description><subject>Additives</subject><subject>Approximation</subject><subject>Correlation</subject><subject>Devices</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Probability density functions</subject><subject>Signal processing</subject><issn>1913-1844</issn><issn>1913-1852</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKxDAQhoMouK7efIAePdg1aRKbeJOqq7DqpfcwJqlE2qRmtopvb2XV0z__8DEwHyGnjK6k5PpiAFx96KhGTukeWTDNeMmUrPb_ZyEOyRHiG6WXleZ6Qa4ek_N9iK9F6oom5ex72HpXtJ-pvAmDjxhShL54SrFcw4QYIM4loMdjctBBj_7kN5ekvbttm_ty87x-aK43pa2pKK3QlLoX4Aykr5lQ81IBt4rWjDGoHHfMam25cAqkrcFVAFCrSiopqLN8Sc52Z8ec3iePWzMEtL7vIfo0oZmfkopKocSMnu9QmxNi9p0ZcxggfxlGzY8hMxsyf4b4NyX_WX0</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Mikhailovich Artuschenko, Vladimir</creator><creator>Leonidovich Samarov, Kim</creator><creator>Petrovich Golubev, Andrey</creator><creator>Yurievich Shchikanov, Aleksey</creator><creator>Sergeevich Kochetkov, Aleksey</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20150801</creationdate><title>Modeling of Correlated Two-Dimensional Non-Gaussian Noises</title><author>Mikhailovich Artuschenko, Vladimir ; Leonidovich Samarov, Kim ; Petrovich Golubev, Andrey ; Yurievich Shchikanov, Aleksey ; Sergeevich Kochetkov, Aleksey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c704-c4900dba31a5e71487048a3c807111a2d3d1c99c34d8a5c7ad2aaa78258540dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Additives</topic><topic>Approximation</topic><topic>Correlation</topic><topic>Devices</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Probability density functions</topic><topic>Signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Mikhailovich Artuschenko, Vladimir</creatorcontrib><creatorcontrib>Leonidovich Samarov, Kim</creatorcontrib><creatorcontrib>Petrovich Golubev, Andrey</creatorcontrib><creatorcontrib>Yurievich Shchikanov, Aleksey</creatorcontrib><creatorcontrib>Sergeevich Kochetkov, Aleksey</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Modern applied science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhailovich Artuschenko, Vladimir</au><au>Leonidovich Samarov, Kim</au><au>Petrovich Golubev, Andrey</au><au>Yurievich Shchikanov, Aleksey</au><au>Sergeevich Kochetkov, Aleksey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Correlated Two-Dimensional Non-Gaussian Noises</atitle><jtitle>Modern applied science</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>9</volume><issue>8</issue><spage>300</spage><epage>300</epage><pages>300-300</pages><issn>1913-1844</issn><eissn>1913-1852</eissn><abstract>The article describes and analyzes mathematical models of multiplicative and additive non-Gaussian noises affecting the useful signals. For synthesis and analysis, and, hence, the effective design of information systems and radio devices operating in conditions of intense perturbations it is necessary to choose not only the adequate mathematical model of the useful signals and information processes, but also the corresponding models of random effects, possessing in general non-Gaussian multiplicative and additive character. To describe the arbitrary non-Gaussian noises, the authors used a two-dimensional elliptic symmetric probability density function, including two extreme cases: Gaussian processes and a sinusoidal signal with random initial phase distributed uniformly in the interval. To describe the real density of probability density function of the non-Gaussian process, the authors propose to approximate its priori known as one-dimensional probability density function and a specially designed transitional probability density function, and show the adequacy of this approximation of the real two-dimensional probability density function of correlated noises.</abstract><doi>10.5539/mas.v9n8p300</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1913-1844
ispartof Modern applied science, 2015-08, Vol.9 (8), p.300-300
issn 1913-1844
1913-1852
language eng
recordid cdi_proquest_miscellaneous_1845805484
source Full-Text Journals in Chemistry (Open access); EZB Electronic Journals Library
subjects Additives
Approximation
Correlation
Devices
Mathematical models
Noise
Probability density functions
Signal processing
title Modeling of Correlated Two-Dimensional Non-Gaussian Noises
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Correlated%20Two-Dimensional%20Non-Gaussian%20Noises&rft.jtitle=Modern%20applied%20science&rft.au=Mikhailovich%20Artuschenko,%20Vladimir&rft.date=2015-08-01&rft.volume=9&rft.issue=8&rft.spage=300&rft.epage=300&rft.pages=300-300&rft.issn=1913-1844&rft.eissn=1913-1852&rft_id=info:doi/10.5539/mas.v9n8p300&rft_dat=%3Cproquest_cross%3E1845805484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845805484&rft_id=info:pmid/&rfr_iscdi=true