Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints
We consider second-order optimality conditions for set-valued optimization problems subject to mixed constraints. Such optimization models are useful in a wide range of practical applications. By using several kinds of derivatives, we obtain second-order necessary conditions for local Q -minimizers...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2016-10, Vol.171 (1), p.45-69 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 69 |
---|---|
container_issue | 1 |
container_start_page | 45 |
container_title | Journal of optimization theory and applications |
container_volume | 171 |
creator | Khanh, Phan Quoc Tung, Nguyen Minh |
description | We consider second-order optimality conditions for set-valued optimization problems subject to mixed constraints. Such optimization models are useful in a wide range of practical applications. By using several kinds of derivatives, we obtain second-order necessary conditions for local
Q
-minimizers and local firm minimizers with attention to the envelope-like effect. Under the second-order Abadie constraint qualification, we get stronger necessary conditions. When the second-order Kurcyusz–Robinson–Zowe constraint qualification is imposed, our multiplier rules are of the Karush–Kuhn–Tucker type. Sufficient conditions for firm minimizers are established without any convexity assumptions. As an application, we extend and improve some recent existing results for nonsmooth mathematical programming. |
doi_str_mv | 10.1007/s10957-016-0995-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845804357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845804357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-70a5e79af5b3428ce18f53bc95b4f3a9949d07d3fc96dc671fc37023d9f687f73</originalsourceid><addsrcrecordid>eNp1kc1qJCEUhWVIYDo_D5CdMJtsnFzLstRlaPIzkNCLzmQrtqWDTbfVUQs6YR4-Fp1FCGSl3Pt9hwsHoQsKvymAuMoUFBcEaEdAKU72P9CMcsFII4U8QjOApiGsYeonOsl5DQBKinaG_i-dHWJPFql3Cc_rN5QwxIz9kPBi5yKpM4cfQwzb8OZSxib2-Dak7edZiHjpCnk2m9H1VSvTwkxBeDmu1s4WXIYq7Ou25uWSTIgln6FjbzbZnX-8p-jv7c3T_J48LO7-zK8fiGWtKkSA4U4o4_mKtY20jkrP2coqvmo9M0q1qgfRM29V19tOUG-ZgIb1yndSeMFO0eUhd5eGl9HlorchW7fZmOiGMWsqWy6hZXxCf31B18OYYr2uUlR1XSsFVIoeKJuGnJPzepfC1qRXTUFPfehDH7r2oac-9L46zcHJlY3_XPqU_K30Dvi7j0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819664870</pqid></control><display><type>article</type><title>Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints</title><source>Springer Nature - Complete Springer Journals</source><creator>Khanh, Phan Quoc ; Tung, Nguyen Minh</creator><creatorcontrib>Khanh, Phan Quoc ; Tung, Nguyen Minh</creatorcontrib><description>We consider second-order optimality conditions for set-valued optimization problems subject to mixed constraints. Such optimization models are useful in a wide range of practical applications. By using several kinds of derivatives, we obtain second-order necessary conditions for local
Q
-minimizers and local firm minimizers with attention to the envelope-like effect. Under the second-order Abadie constraint qualification, we get stronger necessary conditions. When the second-order Kurcyusz–Robinson–Zowe constraint qualification is imposed, our multiplier rules are of the Karush–Kuhn–Tucker type. Sufficient conditions for firm minimizers are established without any convexity assumptions. As an application, we extend and improve some recent existing results for nonsmooth mathematical programming.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-016-0995-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Convexity ; Derivatives ; Engineering ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Multipliers ; Operations Research/Decision Theory ; Optimization ; Studies ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2016-10, Vol.171 (1), p.45-69</ispartof><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-70a5e79af5b3428ce18f53bc95b4f3a9949d07d3fc96dc671fc37023d9f687f73</citedby><cites>FETCH-LOGICAL-c349t-70a5e79af5b3428ce18f53bc95b4f3a9949d07d3fc96dc671fc37023d9f687f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-016-0995-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-016-0995-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Khanh, Phan Quoc</creatorcontrib><creatorcontrib>Tung, Nguyen Minh</creatorcontrib><title>Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>We consider second-order optimality conditions for set-valued optimization problems subject to mixed constraints. Such optimization models are useful in a wide range of practical applications. By using several kinds of derivatives, we obtain second-order necessary conditions for local
Q
-minimizers and local firm minimizers with attention to the envelope-like effect. Under the second-order Abadie constraint qualification, we get stronger necessary conditions. When the second-order Kurcyusz–Robinson–Zowe constraint qualification is imposed, our multiplier rules are of the Karush–Kuhn–Tucker type. Sufficient conditions for firm minimizers are established without any convexity assumptions. As an application, we extend and improve some recent existing results for nonsmooth mathematical programming.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Convexity</subject><subject>Derivatives</subject><subject>Engineering</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multipliers</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc1qJCEUhWVIYDo_D5CdMJtsnFzLstRlaPIzkNCLzmQrtqWDTbfVUQs6YR4-Fp1FCGSl3Pt9hwsHoQsKvymAuMoUFBcEaEdAKU72P9CMcsFII4U8QjOApiGsYeonOsl5DQBKinaG_i-dHWJPFql3Cc_rN5QwxIz9kPBi5yKpM4cfQwzb8OZSxib2-Dak7edZiHjpCnk2m9H1VSvTwkxBeDmu1s4WXIYq7Ou25uWSTIgln6FjbzbZnX-8p-jv7c3T_J48LO7-zK8fiGWtKkSA4U4o4_mKtY20jkrP2coqvmo9M0q1qgfRM29V19tOUG-ZgIb1yndSeMFO0eUhd5eGl9HlorchW7fZmOiGMWsqWy6hZXxCf31B18OYYr2uUlR1XSsFVIoeKJuGnJPzepfC1qRXTUFPfehDH7r2oac-9L46zcHJlY3_XPqU_K30Dvi7j0M</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Khanh, Phan Quoc</creator><creator>Tung, Nguyen Minh</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20161001</creationdate><title>Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints</title><author>Khanh, Phan Quoc ; Tung, Nguyen Minh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-70a5e79af5b3428ce18f53bc95b4f3a9949d07d3fc96dc671fc37023d9f687f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Convexity</topic><topic>Derivatives</topic><topic>Engineering</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multipliers</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khanh, Phan Quoc</creatorcontrib><creatorcontrib>Tung, Nguyen Minh</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanh, Phan Quoc</au><au>Tung, Nguyen Minh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>171</volume><issue>1</issue><spage>45</spage><epage>69</epage><pages>45-69</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>We consider second-order optimality conditions for set-valued optimization problems subject to mixed constraints. Such optimization models are useful in a wide range of practical applications. By using several kinds of derivatives, we obtain second-order necessary conditions for local
Q
-minimizers and local firm minimizers with attention to the envelope-like effect. Under the second-order Abadie constraint qualification, we get stronger necessary conditions. When the second-order Kurcyusz–Robinson–Zowe constraint qualification is imposed, our multiplier rules are of the Karush–Kuhn–Tucker type. Sufficient conditions for firm minimizers are established without any convexity assumptions. As an application, we extend and improve some recent existing results for nonsmooth mathematical programming.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-016-0995-x</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2016-10, Vol.171 (1), p.45-69 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845804357 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Calculus of Variations and Optimal Control Optimization Convexity Derivatives Engineering Mathematical programming Mathematics Mathematics and Statistics Multipliers Operations Research/Decision Theory Optimization Studies Theory of Computation |
title | Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second-Order%20Conditions%20for%20Open-Cone%20Minimizers%20and%20Firm%20Minimizers%20in%20Set-Valued%20Optimization%20Subject%20to%20Mixed%20Constraints&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Khanh,%20Phan%20Quoc&rft.date=2016-10-01&rft.volume=171&rft.issue=1&rft.spage=45&rft.epage=69&rft.pages=45-69&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-016-0995-x&rft_dat=%3Cproquest_cross%3E1845804357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1819664870&rft_id=info:pmid/&rfr_iscdi=true |