Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints

We consider second-order optimality conditions for set-valued optimization problems subject to mixed constraints. Such optimization models are useful in a wide range of practical applications. By using several kinds of derivatives, we obtain second-order necessary conditions for local Q -minimizers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2016-10, Vol.171 (1), p.45-69
Hauptverfasser: Khanh, Phan Quoc, Tung, Nguyen Minh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 1
container_start_page 45
container_title Journal of optimization theory and applications
container_volume 171
creator Khanh, Phan Quoc
Tung, Nguyen Minh
description We consider second-order optimality conditions for set-valued optimization problems subject to mixed constraints. Such optimization models are useful in a wide range of practical applications. By using several kinds of derivatives, we obtain second-order necessary conditions for local Q -minimizers and local firm minimizers with attention to the envelope-like effect. Under the second-order Abadie constraint qualification, we get stronger necessary conditions. When the second-order Kurcyusz–Robinson–Zowe constraint qualification is imposed, our multiplier rules are of the Karush–Kuhn–Tucker type. Sufficient conditions for firm minimizers are established without any convexity assumptions. As an application, we extend and improve some recent existing results for nonsmooth mathematical programming.
doi_str_mv 10.1007/s10957-016-0995-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845804357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845804357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-70a5e79af5b3428ce18f53bc95b4f3a9949d07d3fc96dc671fc37023d9f687f73</originalsourceid><addsrcrecordid>eNp1kc1qJCEUhWVIYDo_D5CdMJtsnFzLstRlaPIzkNCLzmQrtqWDTbfVUQs6YR4-Fp1FCGSl3Pt9hwsHoQsKvymAuMoUFBcEaEdAKU72P9CMcsFII4U8QjOApiGsYeonOsl5DQBKinaG_i-dHWJPFql3Cc_rN5QwxIz9kPBi5yKpM4cfQwzb8OZSxib2-Dak7edZiHjpCnk2m9H1VSvTwkxBeDmu1s4WXIYq7Ou25uWSTIgln6FjbzbZnX-8p-jv7c3T_J48LO7-zK8fiGWtKkSA4U4o4_mKtY20jkrP2coqvmo9M0q1qgfRM29V19tOUG-ZgIb1yndSeMFO0eUhd5eGl9HlorchW7fZmOiGMWsqWy6hZXxCf31B18OYYr2uUlR1XSsFVIoeKJuGnJPzepfC1qRXTUFPfehDH7r2oac-9L46zcHJlY3_XPqU_K30Dvi7j0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819664870</pqid></control><display><type>article</type><title>Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints</title><source>Springer Nature - Complete Springer Journals</source><creator>Khanh, Phan Quoc ; Tung, Nguyen Minh</creator><creatorcontrib>Khanh, Phan Quoc ; Tung, Nguyen Minh</creatorcontrib><description>We consider second-order optimality conditions for set-valued optimization problems subject to mixed constraints. Such optimization models are useful in a wide range of practical applications. By using several kinds of derivatives, we obtain second-order necessary conditions for local Q -minimizers and local firm minimizers with attention to the envelope-like effect. Under the second-order Abadie constraint qualification, we get stronger necessary conditions. When the second-order Kurcyusz–Robinson–Zowe constraint qualification is imposed, our multiplier rules are of the Karush–Kuhn–Tucker type. Sufficient conditions for firm minimizers are established without any convexity assumptions. As an application, we extend and improve some recent existing results for nonsmooth mathematical programming.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-016-0995-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Convexity ; Derivatives ; Engineering ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Multipliers ; Operations Research/Decision Theory ; Optimization ; Studies ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2016-10, Vol.171 (1), p.45-69</ispartof><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-70a5e79af5b3428ce18f53bc95b4f3a9949d07d3fc96dc671fc37023d9f687f73</citedby><cites>FETCH-LOGICAL-c349t-70a5e79af5b3428ce18f53bc95b4f3a9949d07d3fc96dc671fc37023d9f687f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-016-0995-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-016-0995-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Khanh, Phan Quoc</creatorcontrib><creatorcontrib>Tung, Nguyen Minh</creatorcontrib><title>Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>We consider second-order optimality conditions for set-valued optimization problems subject to mixed constraints. Such optimization models are useful in a wide range of practical applications. By using several kinds of derivatives, we obtain second-order necessary conditions for local Q -minimizers and local firm minimizers with attention to the envelope-like effect. Under the second-order Abadie constraint qualification, we get stronger necessary conditions. When the second-order Kurcyusz–Robinson–Zowe constraint qualification is imposed, our multiplier rules are of the Karush–Kuhn–Tucker type. Sufficient conditions for firm minimizers are established without any convexity assumptions. As an application, we extend and improve some recent existing results for nonsmooth mathematical programming.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Convexity</subject><subject>Derivatives</subject><subject>Engineering</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multipliers</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc1qJCEUhWVIYDo_D5CdMJtsnFzLstRlaPIzkNCLzmQrtqWDTbfVUQs6YR4-Fp1FCGSl3Pt9hwsHoQsKvymAuMoUFBcEaEdAKU72P9CMcsFII4U8QjOApiGsYeonOsl5DQBKinaG_i-dHWJPFql3Cc_rN5QwxIz9kPBi5yKpM4cfQwzb8OZSxib2-Dak7edZiHjpCnk2m9H1VSvTwkxBeDmu1s4WXIYq7Ou25uWSTIgln6FjbzbZnX-8p-jv7c3T_J48LO7-zK8fiGWtKkSA4U4o4_mKtY20jkrP2coqvmo9M0q1qgfRM29V19tOUG-ZgIb1yndSeMFO0eUhd5eGl9HlorchW7fZmOiGMWsqWy6hZXxCf31B18OYYr2uUlR1XSsFVIoeKJuGnJPzepfC1qRXTUFPfehDH7r2oac-9L46zcHJlY3_XPqU_K30Dvi7j0M</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Khanh, Phan Quoc</creator><creator>Tung, Nguyen Minh</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20161001</creationdate><title>Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints</title><author>Khanh, Phan Quoc ; Tung, Nguyen Minh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-70a5e79af5b3428ce18f53bc95b4f3a9949d07d3fc96dc671fc37023d9f687f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Convexity</topic><topic>Derivatives</topic><topic>Engineering</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multipliers</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khanh, Phan Quoc</creatorcontrib><creatorcontrib>Tung, Nguyen Minh</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanh, Phan Quoc</au><au>Tung, Nguyen Minh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>171</volume><issue>1</issue><spage>45</spage><epage>69</epage><pages>45-69</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>We consider second-order optimality conditions for set-valued optimization problems subject to mixed constraints. Such optimization models are useful in a wide range of practical applications. By using several kinds of derivatives, we obtain second-order necessary conditions for local Q -minimizers and local firm minimizers with attention to the envelope-like effect. Under the second-order Abadie constraint qualification, we get stronger necessary conditions. When the second-order Kurcyusz–Robinson–Zowe constraint qualification is imposed, our multiplier rules are of the Karush–Kuhn–Tucker type. Sufficient conditions for firm minimizers are established without any convexity assumptions. As an application, we extend and improve some recent existing results for nonsmooth mathematical programming.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-016-0995-x</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2016-10, Vol.171 (1), p.45-69
issn 0022-3239
1573-2878
language eng
recordid cdi_proquest_miscellaneous_1845804357
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Calculus of Variations and Optimal Control
Optimization
Convexity
Derivatives
Engineering
Mathematical programming
Mathematics
Mathematics and Statistics
Multipliers
Operations Research/Decision Theory
Optimization
Studies
Theory of Computation
title Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second-Order%20Conditions%20for%20Open-Cone%20Minimizers%20and%20Firm%20Minimizers%20in%20Set-Valued%20Optimization%20Subject%20to%20Mixed%20Constraints&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Khanh,%20Phan%20Quoc&rft.date=2016-10-01&rft.volume=171&rft.issue=1&rft.spage=45&rft.epage=69&rft.pages=45-69&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-016-0995-x&rft_dat=%3Cproquest_cross%3E1845804357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1819664870&rft_id=info:pmid/&rfr_iscdi=true