Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection

In spite of widespread use of generalized additive models (GAMs) to remedy the “curse of dimensionality”, there is no well-grounded methodology developed for simultaneous inference and variable selection for GAM in existing literature. However, both are essential in enhancing the capability of stati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Test (Madrid, Spain) Spain), 2016-12, Vol.25 (4), p.607-626
Hauptverfasser: Zheng, Shuzhuan, Liu, Rong, Yang, Lijian, Härdle, Wolfgang K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 626
container_issue 4
container_start_page 607
container_title Test (Madrid, Spain)
container_volume 25
creator Zheng, Shuzhuan
Liu, Rong
Yang, Lijian
Härdle, Wolfgang K.
description In spite of widespread use of generalized additive models (GAMs) to remedy the “curse of dimensionality”, there is no well-grounded methodology developed for simultaneous inference and variable selection for GAM in existing literature. However, both are essential in enhancing the capability of statistical models. To this end, we establish simultaneous confidence corridors (SCCs) and a type of Bayesian information criterion (BIC) through the spline-backfitted kernel smoothing techniques proposed in recent articles. To characterize the global features of each non-parametric components, SCCs are constructed for testing their overall trends and entire shapes. By extending the BIC in additive models with identity/trivial link, an asymptotically consistent BIC approach for variable selection is built up in GAM to improve the parsimony of model without loss of prediction accuracy. Simulations and a real example corroborate the above findings.
doi_str_mv 10.1007/s11749-016-0480-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845804014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4203828241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-16830875555232303c53850a20845e8bd1f0a1499ac89a5ec664b122906b2d9a3</originalsourceid><addsrcrecordid>eNp1kT1LBDEQhhdRUE9_gF3AxmZ1kuzmsnYifoFgodYhl8weOXKJJrsH-uvNuRYiOM1M8bwvA09VnVA4pwDzi0zpvOlqoKKGRkItd6oDKgWvJROwW27KeQ1Civ3qMOcVgGgEowdVfB704PLgjPbEhR4TBoOkj4ksMWDS3n2iJdpaN7gNknW06PMlyW49-kEHjGMmJobe2e-giSk5G1MmOliy0cnphUeS0aMZXAxH1V6vfcbjnz2rXm9vXq7v68enu4frq8facMmGmgrJQc7bMowzDty0XLagGcimRbmwtAdNm67TRna6RSNEs6CMdSAWzHaaz6qzqfctxfcR86DWLhv0fnpZ0dIjoQHaFPT0D7qKYwrlu0KxVhZkLgtFJ8qkmHPCXr0lt9bpQ1FQWwVqUqCKArVVoLYZNmVyYcMS06_mf0NfwhqJcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825814378</pqid></control><display><type>article</type><title>Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zheng, Shuzhuan ; Liu, Rong ; Yang, Lijian ; Härdle, Wolfgang K.</creator><creatorcontrib>Zheng, Shuzhuan ; Liu, Rong ; Yang, Lijian ; Härdle, Wolfgang K.</creatorcontrib><description>In spite of widespread use of generalized additive models (GAMs) to remedy the “curse of dimensionality”, there is no well-grounded methodology developed for simultaneous inference and variable selection for GAM in existing literature. However, both are essential in enhancing the capability of statistical models. To this end, we establish simultaneous confidence corridors (SCCs) and a type of Bayesian information criterion (BIC) through the spline-backfitted kernel smoothing techniques proposed in recent articles. To characterize the global features of each non-parametric components, SCCs are constructed for testing their overall trends and entire shapes. By extending the BIC in additive models with identity/trivial link, an asymptotically consistent BIC approach for variable selection is built up in GAM to improve the parsimony of model without loss of prediction accuracy. Simulations and a real example corroborate the above findings.</description><identifier>ISSN: 1133-0686</identifier><identifier>EISSN: 1863-8260</identifier><identifier>DOI: 10.1007/s11749-016-0480-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Additives ; Asymptotic properties ; Confidence ; Confidence intervals ; Corridors ; Current liabilities ; Economics ; Finance ; Generalized linear models ; Inference ; Insurance ; Management ; Mathematical models ; Mathematics and Statistics ; Original Paper ; Remedies ; Statistical analysis ; Statistical inference ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Studies</subject><ispartof>Test (Madrid, Spain), 2016-12, Vol.25 (4), p.607-626</ispartof><rights>Sociedad de Estadística e Investigación Operativa 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-16830875555232303c53850a20845e8bd1f0a1499ac89a5ec664b122906b2d9a3</citedby><cites>FETCH-LOGICAL-c382t-16830875555232303c53850a20845e8bd1f0a1499ac89a5ec664b122906b2d9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11749-016-0480-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11749-016-0480-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zheng, Shuzhuan</creatorcontrib><creatorcontrib>Liu, Rong</creatorcontrib><creatorcontrib>Yang, Lijian</creatorcontrib><creatorcontrib>Härdle, Wolfgang K.</creatorcontrib><title>Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection</title><title>Test (Madrid, Spain)</title><addtitle>TEST</addtitle><description>In spite of widespread use of generalized additive models (GAMs) to remedy the “curse of dimensionality”, there is no well-grounded methodology developed for simultaneous inference and variable selection for GAM in existing literature. However, both are essential in enhancing the capability of statistical models. To this end, we establish simultaneous confidence corridors (SCCs) and a type of Bayesian information criterion (BIC) through the spline-backfitted kernel smoothing techniques proposed in recent articles. To characterize the global features of each non-parametric components, SCCs are constructed for testing their overall trends and entire shapes. By extending the BIC in additive models with identity/trivial link, an asymptotically consistent BIC approach for variable selection is built up in GAM to improve the parsimony of model without loss of prediction accuracy. Simulations and a real example corroborate the above findings.</description><subject>Additives</subject><subject>Asymptotic properties</subject><subject>Confidence</subject><subject>Confidence intervals</subject><subject>Corridors</subject><subject>Current liabilities</subject><subject>Economics</subject><subject>Finance</subject><subject>Generalized linear models</subject><subject>Inference</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical models</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Remedies</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Studies</subject><issn>1133-0686</issn><issn>1863-8260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kT1LBDEQhhdRUE9_gF3AxmZ1kuzmsnYifoFgodYhl8weOXKJJrsH-uvNuRYiOM1M8bwvA09VnVA4pwDzi0zpvOlqoKKGRkItd6oDKgWvJROwW27KeQ1Civ3qMOcVgGgEowdVfB704PLgjPbEhR4TBoOkj4ksMWDS3n2iJdpaN7gNknW06PMlyW49-kEHjGMmJobe2e-giSk5G1MmOliy0cnphUeS0aMZXAxH1V6vfcbjnz2rXm9vXq7v68enu4frq8facMmGmgrJQc7bMowzDty0XLagGcimRbmwtAdNm67TRna6RSNEs6CMdSAWzHaaz6qzqfctxfcR86DWLhv0fnpZ0dIjoQHaFPT0D7qKYwrlu0KxVhZkLgtFJ8qkmHPCXr0lt9bpQ1FQWwVqUqCKArVVoLYZNmVyYcMS06_mf0NfwhqJcA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Zheng, Shuzhuan</creator><creator>Liu, Rong</creator><creator>Yang, Lijian</creator><creator>Härdle, Wolfgang K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0T</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20161201</creationdate><title>Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection</title><author>Zheng, Shuzhuan ; Liu, Rong ; Yang, Lijian ; Härdle, Wolfgang K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-16830875555232303c53850a20845e8bd1f0a1499ac89a5ec664b122906b2d9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Additives</topic><topic>Asymptotic properties</topic><topic>Confidence</topic><topic>Confidence intervals</topic><topic>Corridors</topic><topic>Current liabilities</topic><topic>Economics</topic><topic>Finance</topic><topic>Generalized linear models</topic><topic>Inference</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical models</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Remedies</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Shuzhuan</creatorcontrib><creatorcontrib>Liu, Rong</creatorcontrib><creatorcontrib>Yang, Lijian</creatorcontrib><creatorcontrib>Härdle, Wolfgang K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Healthcare Administration Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Test (Madrid, Spain)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Shuzhuan</au><au>Liu, Rong</au><au>Yang, Lijian</au><au>Härdle, Wolfgang K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection</atitle><jtitle>Test (Madrid, Spain)</jtitle><stitle>TEST</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>25</volume><issue>4</issue><spage>607</spage><epage>626</epage><pages>607-626</pages><issn>1133-0686</issn><eissn>1863-8260</eissn><abstract>In spite of widespread use of generalized additive models (GAMs) to remedy the “curse of dimensionality”, there is no well-grounded methodology developed for simultaneous inference and variable selection for GAM in existing literature. However, both are essential in enhancing the capability of statistical models. To this end, we establish simultaneous confidence corridors (SCCs) and a type of Bayesian information criterion (BIC) through the spline-backfitted kernel smoothing techniques proposed in recent articles. To characterize the global features of each non-parametric components, SCCs are constructed for testing their overall trends and entire shapes. By extending the BIC in additive models with identity/trivial link, an asymptotically consistent BIC approach for variable selection is built up in GAM to improve the parsimony of model without loss of prediction accuracy. Simulations and a real example corroborate the above findings.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11749-016-0480-8</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1133-0686
ispartof Test (Madrid, Spain), 2016-12, Vol.25 (4), p.607-626
issn 1133-0686
1863-8260
language eng
recordid cdi_proquest_miscellaneous_1845804014
source SpringerLink Journals - AutoHoldings
subjects Additives
Asymptotic properties
Confidence
Confidence intervals
Corridors
Current liabilities
Economics
Finance
Generalized linear models
Inference
Insurance
Management
Mathematical models
Mathematics and Statistics
Original Paper
Remedies
Statistical analysis
Statistical inference
Statistical Theory and Methods
Statistics
Statistics for Business
Studies
title Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20inference%20for%20generalized%20additive%20models:%20simultaneous%20confidence%20corridors%20and%20variable%20selection&rft.jtitle=Test%20(Madrid,%20Spain)&rft.au=Zheng,%20Shuzhuan&rft.date=2016-12-01&rft.volume=25&rft.issue=4&rft.spage=607&rft.epage=626&rft.pages=607-626&rft.issn=1133-0686&rft.eissn=1863-8260&rft_id=info:doi/10.1007/s11749-016-0480-8&rft_dat=%3Cproquest_cross%3E4203828241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825814378&rft_id=info:pmid/&rfr_iscdi=true