Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection
In spite of widespread use of generalized additive models (GAMs) to remedy the “curse of dimensionality”, there is no well-grounded methodology developed for simultaneous inference and variable selection for GAM in existing literature. However, both are essential in enhancing the capability of stati...
Gespeichert in:
Veröffentlicht in: | Test (Madrid, Spain) Spain), 2016-12, Vol.25 (4), p.607-626 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 626 |
---|---|
container_issue | 4 |
container_start_page | 607 |
container_title | Test (Madrid, Spain) |
container_volume | 25 |
creator | Zheng, Shuzhuan Liu, Rong Yang, Lijian Härdle, Wolfgang K. |
description | In spite of widespread use of generalized additive models (GAMs) to remedy the “curse of dimensionality”, there is no well-grounded methodology developed for simultaneous inference and variable selection for GAM in existing literature. However, both are essential in enhancing the capability of statistical models. To this end, we establish simultaneous confidence corridors (SCCs) and a type of Bayesian information criterion (BIC) through the spline-backfitted kernel smoothing techniques proposed in recent articles. To characterize the global features of each non-parametric components, SCCs are constructed for testing their overall trends and entire shapes. By extending the BIC in additive models with identity/trivial link, an asymptotically consistent BIC approach for variable selection is built up in GAM to improve the parsimony of model without loss of prediction accuracy. Simulations and a real example corroborate the above findings. |
doi_str_mv | 10.1007/s11749-016-0480-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845804014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4203828241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-16830875555232303c53850a20845e8bd1f0a1499ac89a5ec664b122906b2d9a3</originalsourceid><addsrcrecordid>eNp1kT1LBDEQhhdRUE9_gF3AxmZ1kuzmsnYifoFgodYhl8weOXKJJrsH-uvNuRYiOM1M8bwvA09VnVA4pwDzi0zpvOlqoKKGRkItd6oDKgWvJROwW27KeQ1Civ3qMOcVgGgEowdVfB704PLgjPbEhR4TBoOkj4ksMWDS3n2iJdpaN7gNknW06PMlyW49-kEHjGMmJobe2e-giSk5G1MmOliy0cnphUeS0aMZXAxH1V6vfcbjnz2rXm9vXq7v68enu4frq8facMmGmgrJQc7bMowzDty0XLagGcimRbmwtAdNm67TRna6RSNEs6CMdSAWzHaaz6qzqfctxfcR86DWLhv0fnpZ0dIjoQHaFPT0D7qKYwrlu0KxVhZkLgtFJ8qkmHPCXr0lt9bpQ1FQWwVqUqCKArVVoLYZNmVyYcMS06_mf0NfwhqJcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825814378</pqid></control><display><type>article</type><title>Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zheng, Shuzhuan ; Liu, Rong ; Yang, Lijian ; Härdle, Wolfgang K.</creator><creatorcontrib>Zheng, Shuzhuan ; Liu, Rong ; Yang, Lijian ; Härdle, Wolfgang K.</creatorcontrib><description>In spite of widespread use of generalized additive models (GAMs) to remedy the “curse of dimensionality”, there is no well-grounded methodology developed for simultaneous inference and variable selection for GAM in existing literature. However, both are essential in enhancing the capability of statistical models. To this end, we establish simultaneous confidence corridors (SCCs) and a type of Bayesian information criterion (BIC) through the spline-backfitted kernel smoothing techniques proposed in recent articles. To characterize the global features of each non-parametric components, SCCs are constructed for testing their overall trends and entire shapes. By extending the BIC in additive models with identity/trivial link, an asymptotically consistent BIC approach for variable selection is built up in GAM to improve the parsimony of model without loss of prediction accuracy. Simulations and a real example corroborate the above findings.</description><identifier>ISSN: 1133-0686</identifier><identifier>EISSN: 1863-8260</identifier><identifier>DOI: 10.1007/s11749-016-0480-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Additives ; Asymptotic properties ; Confidence ; Confidence intervals ; Corridors ; Current liabilities ; Economics ; Finance ; Generalized linear models ; Inference ; Insurance ; Management ; Mathematical models ; Mathematics and Statistics ; Original Paper ; Remedies ; Statistical analysis ; Statistical inference ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Studies</subject><ispartof>Test (Madrid, Spain), 2016-12, Vol.25 (4), p.607-626</ispartof><rights>Sociedad de Estadística e Investigación Operativa 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-16830875555232303c53850a20845e8bd1f0a1499ac89a5ec664b122906b2d9a3</citedby><cites>FETCH-LOGICAL-c382t-16830875555232303c53850a20845e8bd1f0a1499ac89a5ec664b122906b2d9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11749-016-0480-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11749-016-0480-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zheng, Shuzhuan</creatorcontrib><creatorcontrib>Liu, Rong</creatorcontrib><creatorcontrib>Yang, Lijian</creatorcontrib><creatorcontrib>Härdle, Wolfgang K.</creatorcontrib><title>Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection</title><title>Test (Madrid, Spain)</title><addtitle>TEST</addtitle><description>In spite of widespread use of generalized additive models (GAMs) to remedy the “curse of dimensionality”, there is no well-grounded methodology developed for simultaneous inference and variable selection for GAM in existing literature. However, both are essential in enhancing the capability of statistical models. To this end, we establish simultaneous confidence corridors (SCCs) and a type of Bayesian information criterion (BIC) through the spline-backfitted kernel smoothing techniques proposed in recent articles. To characterize the global features of each non-parametric components, SCCs are constructed for testing their overall trends and entire shapes. By extending the BIC in additive models with identity/trivial link, an asymptotically consistent BIC approach for variable selection is built up in GAM to improve the parsimony of model without loss of prediction accuracy. Simulations and a real example corroborate the above findings.</description><subject>Additives</subject><subject>Asymptotic properties</subject><subject>Confidence</subject><subject>Confidence intervals</subject><subject>Corridors</subject><subject>Current liabilities</subject><subject>Economics</subject><subject>Finance</subject><subject>Generalized linear models</subject><subject>Inference</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical models</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Remedies</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Studies</subject><issn>1133-0686</issn><issn>1863-8260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kT1LBDEQhhdRUE9_gF3AxmZ1kuzmsnYifoFgodYhl8weOXKJJrsH-uvNuRYiOM1M8bwvA09VnVA4pwDzi0zpvOlqoKKGRkItd6oDKgWvJROwW27KeQ1Civ3qMOcVgGgEowdVfB704PLgjPbEhR4TBoOkj4ksMWDS3n2iJdpaN7gNknW06PMlyW49-kEHjGMmJobe2e-giSk5G1MmOliy0cnphUeS0aMZXAxH1V6vfcbjnz2rXm9vXq7v68enu4frq8facMmGmgrJQc7bMowzDty0XLagGcimRbmwtAdNm67TRna6RSNEs6CMdSAWzHaaz6qzqfctxfcR86DWLhv0fnpZ0dIjoQHaFPT0D7qKYwrlu0KxVhZkLgtFJ8qkmHPCXr0lt9bpQ1FQWwVqUqCKArVVoLYZNmVyYcMS06_mf0NfwhqJcA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Zheng, Shuzhuan</creator><creator>Liu, Rong</creator><creator>Yang, Lijian</creator><creator>Härdle, Wolfgang K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0T</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20161201</creationdate><title>Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection</title><author>Zheng, Shuzhuan ; Liu, Rong ; Yang, Lijian ; Härdle, Wolfgang K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-16830875555232303c53850a20845e8bd1f0a1499ac89a5ec664b122906b2d9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Additives</topic><topic>Asymptotic properties</topic><topic>Confidence</topic><topic>Confidence intervals</topic><topic>Corridors</topic><topic>Current liabilities</topic><topic>Economics</topic><topic>Finance</topic><topic>Generalized linear models</topic><topic>Inference</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical models</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Remedies</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Shuzhuan</creatorcontrib><creatorcontrib>Liu, Rong</creatorcontrib><creatorcontrib>Yang, Lijian</creatorcontrib><creatorcontrib>Härdle, Wolfgang K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Healthcare Administration Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Test (Madrid, Spain)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Shuzhuan</au><au>Liu, Rong</au><au>Yang, Lijian</au><au>Härdle, Wolfgang K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection</atitle><jtitle>Test (Madrid, Spain)</jtitle><stitle>TEST</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>25</volume><issue>4</issue><spage>607</spage><epage>626</epage><pages>607-626</pages><issn>1133-0686</issn><eissn>1863-8260</eissn><abstract>In spite of widespread use of generalized additive models (GAMs) to remedy the “curse of dimensionality”, there is no well-grounded methodology developed for simultaneous inference and variable selection for GAM in existing literature. However, both are essential in enhancing the capability of statistical models. To this end, we establish simultaneous confidence corridors (SCCs) and a type of Bayesian information criterion (BIC) through the spline-backfitted kernel smoothing techniques proposed in recent articles. To characterize the global features of each non-parametric components, SCCs are constructed for testing their overall trends and entire shapes. By extending the BIC in additive models with identity/trivial link, an asymptotically consistent BIC approach for variable selection is built up in GAM to improve the parsimony of model without loss of prediction accuracy. Simulations and a real example corroborate the above findings.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11749-016-0480-8</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1133-0686 |
ispartof | Test (Madrid, Spain), 2016-12, Vol.25 (4), p.607-626 |
issn | 1133-0686 1863-8260 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845804014 |
source | SpringerLink Journals - AutoHoldings |
subjects | Additives Asymptotic properties Confidence Confidence intervals Corridors Current liabilities Economics Finance Generalized linear models Inference Insurance Management Mathematical models Mathematics and Statistics Original Paper Remedies Statistical analysis Statistical inference Statistical Theory and Methods Statistics Statistics for Business Studies |
title | Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20inference%20for%20generalized%20additive%20models:%20simultaneous%20confidence%20corridors%20and%20variable%20selection&rft.jtitle=Test%20(Madrid,%20Spain)&rft.au=Zheng,%20Shuzhuan&rft.date=2016-12-01&rft.volume=25&rft.issue=4&rft.spage=607&rft.epage=626&rft.pages=607-626&rft.issn=1133-0686&rft.eissn=1863-8260&rft_id=info:doi/10.1007/s11749-016-0480-8&rft_dat=%3Cproquest_cross%3E4203828241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825814378&rft_id=info:pmid/&rfr_iscdi=true |