Discovering outlying aspects in large datasets
We address the problem of outlying aspects mining: given a query object and a reference multidimensional data set, how can we discover what aspects (i.e., subsets of features or subspaces) make the query object most outlying? Outlying aspects mining can be used to explain any data point of interest,...
Gespeichert in:
Veröffentlicht in: | Data mining and knowledge discovery 2016-11, Vol.30 (6), p.1520-1555 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1555 |
---|---|
container_issue | 6 |
container_start_page | 1520 |
container_title | Data mining and knowledge discovery |
container_volume | 30 |
creator | Vinh, Nguyen Xuan Chan, Jeffrey Romano, Simone Bailey, James Leckie, Christopher Ramamohanarao, Kotagiri Pei, Jian |
description | We address the problem of outlying aspects mining: given a query object and a reference multidimensional data set, how can we discover what aspects (i.e., subsets of features or subspaces) make the query object most outlying? Outlying aspects mining can be used to explain any data point of interest, which itself might be an inlier or outlier. In this paper, we investigate several open challenges faced by existing outlying aspects mining techniques and propose novel solutions, including (a) how to design effective scoring functions that are unbiased with respect to dimensionality and yet being computationally efficient, and (b) how to efficiently search through the exponentially large search space of all possible subspaces. We formalize the concept of dimensionality unbiasedness, a desirable property of outlyingness measures. We then characterize existing scoring measures as well as our novel proposed ones in terms of efficiency, dimensionality unbiasedness and interpretability. Finally, we evaluate the effectiveness of different methods for outlying aspects discovery and demonstrate the utility of our proposed approach on both large real and synthetic data sets. |
doi_str_mv | 10.1007/s10618-016-0453-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845803894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4175138751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-82a4ce3812bacfe00f93049f95458c725200789034769584de36ad3d23b4132c3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcFN24y3ptHky5lfMKAGwV3IZOmQ4dOW5NW8N-bUhciuMqFfOdw-Ai5RFghgLqJCDlqCphTEJJTdkQWKBWnSubvx-nmWlCpEU7JWYx7AJCMw4Ks7urouk8f6naXdePQfE2Hjb13Q8zqNmts2PmstIONfojn5KSyTfQXP--SvD3cv66f6Obl8Xl9u6FOSD1QzaxwnmtkW-sqD1AVHERRFTJ9O8UkS5t1AVyovJBalJ7ntuQl41uBnDm-JNdzbx-6j9HHwRzSTt80tvXdGA3qVARcFyKhV3_QfTeGNq1LFColMecThTPlQhdj8JXpQ32w4csgmMmgmQ2aZNBMBg1LGTZnYj_p8eFX87-hbwPvcLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1817751634</pqid></control><display><type>article</type><title>Discovering outlying aspects in large datasets</title><source>Springer Nature - Complete Springer Journals</source><creator>Vinh, Nguyen Xuan ; Chan, Jeffrey ; Romano, Simone ; Bailey, James ; Leckie, Christopher ; Ramamohanarao, Kotagiri ; Pei, Jian</creator><creatorcontrib>Vinh, Nguyen Xuan ; Chan, Jeffrey ; Romano, Simone ; Bailey, James ; Leckie, Christopher ; Ramamohanarao, Kotagiri ; Pei, Jian</creatorcontrib><description>We address the problem of outlying aspects mining: given a query object and a reference multidimensional data set, how can we discover what aspects (i.e., subsets of features or subspaces) make the query object most outlying? Outlying aspects mining can be used to explain any data point of interest, which itself might be an inlier or outlier. In this paper, we investigate several open challenges faced by existing outlying aspects mining techniques and propose novel solutions, including (a) how to design effective scoring functions that are unbiased with respect to dimensionality and yet being computationally efficient, and (b) how to efficiently search through the exponentially large search space of all possible subspaces. We formalize the concept of dimensionality unbiasedness, a desirable property of outlyingness measures. We then characterize existing scoring measures as well as our novel proposed ones in terms of efficiency, dimensionality unbiasedness and interpretability. Finally, we evaluate the effectiveness of different methods for outlying aspects discovery and demonstrate the utility of our proposed approach on both large real and synthetic data sets.</description><identifier>ISSN: 1384-5810</identifier><identifier>EISSN: 1573-756X</identifier><identifier>DOI: 10.1007/s10618-016-0453-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Cancer ; Chemistry and Earth Sciences ; Computational efficiency ; Computer Science ; Data mining ; Data Mining and Knowledge Discovery ; Datasets ; Feature selection ; Information Storage and Retrieval ; Mathematical models ; Multidimensional data ; Physics ; Query processing ; Scoring ; Searching ; Statistics for Engineering ; Subspaces</subject><ispartof>Data mining and knowledge discovery, 2016-11, Vol.30 (6), p.1520-1555</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-82a4ce3812bacfe00f93049f95458c725200789034769584de36ad3d23b4132c3</citedby><cites>FETCH-LOGICAL-c458t-82a4ce3812bacfe00f93049f95458c725200789034769584de36ad3d23b4132c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10618-016-0453-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10618-016-0453-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Vinh, Nguyen Xuan</creatorcontrib><creatorcontrib>Chan, Jeffrey</creatorcontrib><creatorcontrib>Romano, Simone</creatorcontrib><creatorcontrib>Bailey, James</creatorcontrib><creatorcontrib>Leckie, Christopher</creatorcontrib><creatorcontrib>Ramamohanarao, Kotagiri</creatorcontrib><creatorcontrib>Pei, Jian</creatorcontrib><title>Discovering outlying aspects in large datasets</title><title>Data mining and knowledge discovery</title><addtitle>Data Min Knowl Disc</addtitle><description>We address the problem of outlying aspects mining: given a query object and a reference multidimensional data set, how can we discover what aspects (i.e., subsets of features or subspaces) make the query object most outlying? Outlying aspects mining can be used to explain any data point of interest, which itself might be an inlier or outlier. In this paper, we investigate several open challenges faced by existing outlying aspects mining techniques and propose novel solutions, including (a) how to design effective scoring functions that are unbiased with respect to dimensionality and yet being computationally efficient, and (b) how to efficiently search through the exponentially large search space of all possible subspaces. We formalize the concept of dimensionality unbiasedness, a desirable property of outlyingness measures. We then characterize existing scoring measures as well as our novel proposed ones in terms of efficiency, dimensionality unbiasedness and interpretability. Finally, we evaluate the effectiveness of different methods for outlying aspects discovery and demonstrate the utility of our proposed approach on both large real and synthetic data sets.</description><subject>Artificial Intelligence</subject><subject>Cancer</subject><subject>Chemistry and Earth Sciences</subject><subject>Computational efficiency</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Feature selection</subject><subject>Information Storage and Retrieval</subject><subject>Mathematical models</subject><subject>Multidimensional data</subject><subject>Physics</subject><subject>Query processing</subject><subject>Scoring</subject><subject>Searching</subject><subject>Statistics for Engineering</subject><subject>Subspaces</subject><issn>1384-5810</issn><issn>1573-756X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcFN24y3ptHky5lfMKAGwV3IZOmQ4dOW5NW8N-bUhciuMqFfOdw-Ai5RFghgLqJCDlqCphTEJJTdkQWKBWnSubvx-nmWlCpEU7JWYx7AJCMw4Ks7urouk8f6naXdePQfE2Hjb13Q8zqNmts2PmstIONfojn5KSyTfQXP--SvD3cv66f6Obl8Xl9u6FOSD1QzaxwnmtkW-sqD1AVHERRFTJ9O8UkS5t1AVyovJBalJ7ntuQl41uBnDm-JNdzbx-6j9HHwRzSTt80tvXdGA3qVARcFyKhV3_QfTeGNq1LFColMecThTPlQhdj8JXpQ32w4csgmMmgmQ2aZNBMBg1LGTZnYj_p8eFX87-hbwPvcLE</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Vinh, Nguyen Xuan</creator><creator>Chan, Jeffrey</creator><creator>Romano, Simone</creator><creator>Bailey, James</creator><creator>Leckie, Christopher</creator><creator>Ramamohanarao, Kotagiri</creator><creator>Pei, Jian</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20161101</creationdate><title>Discovering outlying aspects in large datasets</title><author>Vinh, Nguyen Xuan ; Chan, Jeffrey ; Romano, Simone ; Bailey, James ; Leckie, Christopher ; Ramamohanarao, Kotagiri ; Pei, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-82a4ce3812bacfe00f93049f95458c725200789034769584de36ad3d23b4132c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial Intelligence</topic><topic>Cancer</topic><topic>Chemistry and Earth Sciences</topic><topic>Computational efficiency</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Feature selection</topic><topic>Information Storage and Retrieval</topic><topic>Mathematical models</topic><topic>Multidimensional data</topic><topic>Physics</topic><topic>Query processing</topic><topic>Scoring</topic><topic>Searching</topic><topic>Statistics for Engineering</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinh, Nguyen Xuan</creatorcontrib><creatorcontrib>Chan, Jeffrey</creatorcontrib><creatorcontrib>Romano, Simone</creatorcontrib><creatorcontrib>Bailey, James</creatorcontrib><creatorcontrib>Leckie, Christopher</creatorcontrib><creatorcontrib>Ramamohanarao, Kotagiri</creatorcontrib><creatorcontrib>Pei, Jian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinh, Nguyen Xuan</au><au>Chan, Jeffrey</au><au>Romano, Simone</au><au>Bailey, James</au><au>Leckie, Christopher</au><au>Ramamohanarao, Kotagiri</au><au>Pei, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering outlying aspects in large datasets</atitle><jtitle>Data mining and knowledge discovery</jtitle><stitle>Data Min Knowl Disc</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>30</volume><issue>6</issue><spage>1520</spage><epage>1555</epage><pages>1520-1555</pages><issn>1384-5810</issn><eissn>1573-756X</eissn><abstract>We address the problem of outlying aspects mining: given a query object and a reference multidimensional data set, how can we discover what aspects (i.e., subsets of features or subspaces) make the query object most outlying? Outlying aspects mining can be used to explain any data point of interest, which itself might be an inlier or outlier. In this paper, we investigate several open challenges faced by existing outlying aspects mining techniques and propose novel solutions, including (a) how to design effective scoring functions that are unbiased with respect to dimensionality and yet being computationally efficient, and (b) how to efficiently search through the exponentially large search space of all possible subspaces. We formalize the concept of dimensionality unbiasedness, a desirable property of outlyingness measures. We then characterize existing scoring measures as well as our novel proposed ones in terms of efficiency, dimensionality unbiasedness and interpretability. Finally, we evaluate the effectiveness of different methods for outlying aspects discovery and demonstrate the utility of our proposed approach on both large real and synthetic data sets.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10618-016-0453-2</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1384-5810 |
ispartof | Data mining and knowledge discovery, 2016-11, Vol.30 (6), p.1520-1555 |
issn | 1384-5810 1573-756X |
language | eng |
recordid | cdi_proquest_miscellaneous_1845803894 |
source | Springer Nature - Complete Springer Journals |
subjects | Artificial Intelligence Cancer Chemistry and Earth Sciences Computational efficiency Computer Science Data mining Data Mining and Knowledge Discovery Datasets Feature selection Information Storage and Retrieval Mathematical models Multidimensional data Physics Query processing Scoring Searching Statistics for Engineering Subspaces |
title | Discovering outlying aspects in large datasets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20outlying%20aspects%20in%20large%20datasets&rft.jtitle=Data%20mining%20and%20knowledge%20discovery&rft.au=Vinh,%20Nguyen%20Xuan&rft.date=2016-11-01&rft.volume=30&rft.issue=6&rft.spage=1520&rft.epage=1555&rft.pages=1520-1555&rft.issn=1384-5810&rft.eissn=1573-756X&rft_id=info:doi/10.1007/s10618-016-0453-2&rft_dat=%3Cproquest_cross%3E4175138751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1817751634&rft_id=info:pmid/&rfr_iscdi=true |