Discovering outlying aspects in large datasets

We address the problem of outlying aspects mining: given a query object and a reference multidimensional data set, how can we discover what aspects (i.e., subsets of features or subspaces) make the query object most outlying? Outlying aspects mining can be used to explain any data point of interest,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Data mining and knowledge discovery 2016-11, Vol.30 (6), p.1520-1555
Hauptverfasser: Vinh, Nguyen Xuan, Chan, Jeffrey, Romano, Simone, Bailey, James, Leckie, Christopher, Ramamohanarao, Kotagiri, Pei, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1555
container_issue 6
container_start_page 1520
container_title Data mining and knowledge discovery
container_volume 30
creator Vinh, Nguyen Xuan
Chan, Jeffrey
Romano, Simone
Bailey, James
Leckie, Christopher
Ramamohanarao, Kotagiri
Pei, Jian
description We address the problem of outlying aspects mining: given a query object and a reference multidimensional data set, how can we discover what aspects (i.e., subsets of features or subspaces) make the query object most outlying? Outlying aspects mining can be used to explain any data point of interest, which itself might be an inlier or outlier. In this paper, we investigate several open challenges faced by existing outlying aspects mining techniques and propose novel solutions, including (a) how to design effective scoring functions that are unbiased with respect to dimensionality and yet being computationally efficient, and (b) how to efficiently search through the exponentially large search space of all possible subspaces. We formalize the concept of dimensionality unbiasedness, a desirable property of outlyingness measures. We then characterize existing scoring measures as well as our novel proposed ones in terms of efficiency, dimensionality unbiasedness and interpretability. Finally, we evaluate the effectiveness of different methods for outlying aspects discovery and demonstrate the utility of our proposed approach on both large real and synthetic data sets.
doi_str_mv 10.1007/s10618-016-0453-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845803894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4175138751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-82a4ce3812bacfe00f93049f95458c725200789034769584de36ad3d23b4132c3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcFN24y3ptHky5lfMKAGwV3IZOmQ4dOW5NW8N-bUhciuMqFfOdw-Ai5RFghgLqJCDlqCphTEJJTdkQWKBWnSubvx-nmWlCpEU7JWYx7AJCMw4Ks7urouk8f6naXdePQfE2Hjb13Q8zqNmts2PmstIONfojn5KSyTfQXP--SvD3cv66f6Obl8Xl9u6FOSD1QzaxwnmtkW-sqD1AVHERRFTJ9O8UkS5t1AVyovJBalJ7ntuQl41uBnDm-JNdzbx-6j9HHwRzSTt80tvXdGA3qVARcFyKhV3_QfTeGNq1LFColMecThTPlQhdj8JXpQ32w4csgmMmgmQ2aZNBMBg1LGTZnYj_p8eFX87-hbwPvcLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1817751634</pqid></control><display><type>article</type><title>Discovering outlying aspects in large datasets</title><source>Springer Nature - Complete Springer Journals</source><creator>Vinh, Nguyen Xuan ; Chan, Jeffrey ; Romano, Simone ; Bailey, James ; Leckie, Christopher ; Ramamohanarao, Kotagiri ; Pei, Jian</creator><creatorcontrib>Vinh, Nguyen Xuan ; Chan, Jeffrey ; Romano, Simone ; Bailey, James ; Leckie, Christopher ; Ramamohanarao, Kotagiri ; Pei, Jian</creatorcontrib><description>We address the problem of outlying aspects mining: given a query object and a reference multidimensional data set, how can we discover what aspects (i.e., subsets of features or subspaces) make the query object most outlying? Outlying aspects mining can be used to explain any data point of interest, which itself might be an inlier or outlier. In this paper, we investigate several open challenges faced by existing outlying aspects mining techniques and propose novel solutions, including (a) how to design effective scoring functions that are unbiased with respect to dimensionality and yet being computationally efficient, and (b) how to efficiently search through the exponentially large search space of all possible subspaces. We formalize the concept of dimensionality unbiasedness, a desirable property of outlyingness measures. We then characterize existing scoring measures as well as our novel proposed ones in terms of efficiency, dimensionality unbiasedness and interpretability. Finally, we evaluate the effectiveness of different methods for outlying aspects discovery and demonstrate the utility of our proposed approach on both large real and synthetic data sets.</description><identifier>ISSN: 1384-5810</identifier><identifier>EISSN: 1573-756X</identifier><identifier>DOI: 10.1007/s10618-016-0453-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Cancer ; Chemistry and Earth Sciences ; Computational efficiency ; Computer Science ; Data mining ; Data Mining and Knowledge Discovery ; Datasets ; Feature selection ; Information Storage and Retrieval ; Mathematical models ; Multidimensional data ; Physics ; Query processing ; Scoring ; Searching ; Statistics for Engineering ; Subspaces</subject><ispartof>Data mining and knowledge discovery, 2016-11, Vol.30 (6), p.1520-1555</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-82a4ce3812bacfe00f93049f95458c725200789034769584de36ad3d23b4132c3</citedby><cites>FETCH-LOGICAL-c458t-82a4ce3812bacfe00f93049f95458c725200789034769584de36ad3d23b4132c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10618-016-0453-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10618-016-0453-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Vinh, Nguyen Xuan</creatorcontrib><creatorcontrib>Chan, Jeffrey</creatorcontrib><creatorcontrib>Romano, Simone</creatorcontrib><creatorcontrib>Bailey, James</creatorcontrib><creatorcontrib>Leckie, Christopher</creatorcontrib><creatorcontrib>Ramamohanarao, Kotagiri</creatorcontrib><creatorcontrib>Pei, Jian</creatorcontrib><title>Discovering outlying aspects in large datasets</title><title>Data mining and knowledge discovery</title><addtitle>Data Min Knowl Disc</addtitle><description>We address the problem of outlying aspects mining: given a query object and a reference multidimensional data set, how can we discover what aspects (i.e., subsets of features or subspaces) make the query object most outlying? Outlying aspects mining can be used to explain any data point of interest, which itself might be an inlier or outlier. In this paper, we investigate several open challenges faced by existing outlying aspects mining techniques and propose novel solutions, including (a) how to design effective scoring functions that are unbiased with respect to dimensionality and yet being computationally efficient, and (b) how to efficiently search through the exponentially large search space of all possible subspaces. We formalize the concept of dimensionality unbiasedness, a desirable property of outlyingness measures. We then characterize existing scoring measures as well as our novel proposed ones in terms of efficiency, dimensionality unbiasedness and interpretability. Finally, we evaluate the effectiveness of different methods for outlying aspects discovery and demonstrate the utility of our proposed approach on both large real and synthetic data sets.</description><subject>Artificial Intelligence</subject><subject>Cancer</subject><subject>Chemistry and Earth Sciences</subject><subject>Computational efficiency</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Feature selection</subject><subject>Information Storage and Retrieval</subject><subject>Mathematical models</subject><subject>Multidimensional data</subject><subject>Physics</subject><subject>Query processing</subject><subject>Scoring</subject><subject>Searching</subject><subject>Statistics for Engineering</subject><subject>Subspaces</subject><issn>1384-5810</issn><issn>1573-756X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcFN24y3ptHky5lfMKAGwV3IZOmQ4dOW5NW8N-bUhciuMqFfOdw-Ai5RFghgLqJCDlqCphTEJJTdkQWKBWnSubvx-nmWlCpEU7JWYx7AJCMw4Ks7urouk8f6naXdePQfE2Hjb13Q8zqNmts2PmstIONfojn5KSyTfQXP--SvD3cv66f6Obl8Xl9u6FOSD1QzaxwnmtkW-sqD1AVHERRFTJ9O8UkS5t1AVyovJBalJ7ntuQl41uBnDm-JNdzbx-6j9HHwRzSTt80tvXdGA3qVARcFyKhV3_QfTeGNq1LFColMecThTPlQhdj8JXpQ32w4csgmMmgmQ2aZNBMBg1LGTZnYj_p8eFX87-hbwPvcLE</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Vinh, Nguyen Xuan</creator><creator>Chan, Jeffrey</creator><creator>Romano, Simone</creator><creator>Bailey, James</creator><creator>Leckie, Christopher</creator><creator>Ramamohanarao, Kotagiri</creator><creator>Pei, Jian</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20161101</creationdate><title>Discovering outlying aspects in large datasets</title><author>Vinh, Nguyen Xuan ; Chan, Jeffrey ; Romano, Simone ; Bailey, James ; Leckie, Christopher ; Ramamohanarao, Kotagiri ; Pei, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-82a4ce3812bacfe00f93049f95458c725200789034769584de36ad3d23b4132c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial Intelligence</topic><topic>Cancer</topic><topic>Chemistry and Earth Sciences</topic><topic>Computational efficiency</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Feature selection</topic><topic>Information Storage and Retrieval</topic><topic>Mathematical models</topic><topic>Multidimensional data</topic><topic>Physics</topic><topic>Query processing</topic><topic>Scoring</topic><topic>Searching</topic><topic>Statistics for Engineering</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinh, Nguyen Xuan</creatorcontrib><creatorcontrib>Chan, Jeffrey</creatorcontrib><creatorcontrib>Romano, Simone</creatorcontrib><creatorcontrib>Bailey, James</creatorcontrib><creatorcontrib>Leckie, Christopher</creatorcontrib><creatorcontrib>Ramamohanarao, Kotagiri</creatorcontrib><creatorcontrib>Pei, Jian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinh, Nguyen Xuan</au><au>Chan, Jeffrey</au><au>Romano, Simone</au><au>Bailey, James</au><au>Leckie, Christopher</au><au>Ramamohanarao, Kotagiri</au><au>Pei, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering outlying aspects in large datasets</atitle><jtitle>Data mining and knowledge discovery</jtitle><stitle>Data Min Knowl Disc</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>30</volume><issue>6</issue><spage>1520</spage><epage>1555</epage><pages>1520-1555</pages><issn>1384-5810</issn><eissn>1573-756X</eissn><abstract>We address the problem of outlying aspects mining: given a query object and a reference multidimensional data set, how can we discover what aspects (i.e., subsets of features or subspaces) make the query object most outlying? Outlying aspects mining can be used to explain any data point of interest, which itself might be an inlier or outlier. In this paper, we investigate several open challenges faced by existing outlying aspects mining techniques and propose novel solutions, including (a) how to design effective scoring functions that are unbiased with respect to dimensionality and yet being computationally efficient, and (b) how to efficiently search through the exponentially large search space of all possible subspaces. We formalize the concept of dimensionality unbiasedness, a desirable property of outlyingness measures. We then characterize existing scoring measures as well as our novel proposed ones in terms of efficiency, dimensionality unbiasedness and interpretability. Finally, we evaluate the effectiveness of different methods for outlying aspects discovery and demonstrate the utility of our proposed approach on both large real and synthetic data sets.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10618-016-0453-2</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1384-5810
ispartof Data mining and knowledge discovery, 2016-11, Vol.30 (6), p.1520-1555
issn 1384-5810
1573-756X
language eng
recordid cdi_proquest_miscellaneous_1845803894
source Springer Nature - Complete Springer Journals
subjects Artificial Intelligence
Cancer
Chemistry and Earth Sciences
Computational efficiency
Computer Science
Data mining
Data Mining and Knowledge Discovery
Datasets
Feature selection
Information Storage and Retrieval
Mathematical models
Multidimensional data
Physics
Query processing
Scoring
Searching
Statistics for Engineering
Subspaces
title Discovering outlying aspects in large datasets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20outlying%20aspects%20in%20large%20datasets&rft.jtitle=Data%20mining%20and%20knowledge%20discovery&rft.au=Vinh,%20Nguyen%20Xuan&rft.date=2016-11-01&rft.volume=30&rft.issue=6&rft.spage=1520&rft.epage=1555&rft.pages=1520-1555&rft.issn=1384-5810&rft.eissn=1573-756X&rft_id=info:doi/10.1007/s10618-016-0453-2&rft_dat=%3Cproquest_cross%3E4175138751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1817751634&rft_id=info:pmid/&rfr_iscdi=true