A Hybrid Fuzzy-RBFN Filter for Data Classification

In this paper, a new filter network is presented that is based on Radial Base Function Networks (RBFNs). The output layer of the network is modified, in order to make it more effective in certain fuzzy control systems. The training of the network is solved by a clustering step, for which two differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced Materials Research 2015-07, Vol.1117, p.261-264
Hauptverfasser: Tusor, Balázs, Várkonyi-Kóczy, Annamária R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue
container_start_page 261
container_title Advanced Materials Research
container_volume 1117
creator Tusor, Balázs
Várkonyi-Kóczy, Annamária R.
description In this paper, a new filter network is presented that is based on Radial Base Function Networks (RBFNs). The output layer of the network is modified, in order to make it more effective in certain fuzzy control systems. The training of the network is solved by a clustering step, for which two different clustering methods are proposed. The suggested structure can efficiently be used for data classification.
doi_str_mv 10.4028/www.scientific.net/AMR.1117.261
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845803087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845803087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1751-c21d98f782396189c1c420589da1d09f9d85e440a17f22d2473d8db4c5548d053</originalsourceid><addsrcrecordid>eNqNkE1LAzEURYMfoK3-hwEXuplpXiaZJCup1VqhKhRdhzTJ4JTpTE2mlPbXm1JBceXqLd7l3MtB6BpwRjERg81mkwVTuaaryspkjesGw-dZBgA8IwUcoXMoCpIKKdgx6uU4FzmjgpOT-MCEpEUh8BnqhbDAuKBA2Dkiw2SynfvKJuP1brdNZ3fjl2Rc1Z3zSdn65F53OhnVOoR9pe6qtrlAp6Wug7v8vn30Pn54G03S6evj02g4TQ1wBqkhYKUouSC5LEBIA4YSzIS0GiyWpbSCOUqxBl4SYgnluRV2Tg2Lmy1meR_dHLgr336uXejUsgrG1bVuXLsOCgRlAudY8Bi9-hNdtGvfxHUKuMSAJYd96vaQMr4NwbtSrXy11H6rAKu9YBUFqx_BKgpWUbDaC1ZRcCQMD4TO6yZ0znz8Kvon4wuKqYco</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790109717</pqid></control><display><type>article</type><title>A Hybrid Fuzzy-RBFN Filter for Data Classification</title><source>Scientific.net Journals</source><creator>Tusor, Balázs ; Várkonyi-Kóczy, Annamária R.</creator><creatorcontrib>Tusor, Balázs ; Várkonyi-Kóczy, Annamária R.</creatorcontrib><description>In this paper, a new filter network is presented that is based on Radial Base Function Networks (RBFNs). The output layer of the network is modified, in order to make it more effective in certain fuzzy control systems. The training of the network is solved by a clustering step, for which two different clustering methods are proposed. The suggested structure can efficiently be used for data classification.</description><identifier>ISSN: 1022-6680</identifier><identifier>ISSN: 1662-8985</identifier><identifier>ISBN: 3038354872</identifier><identifier>ISBN: 9783038354871</identifier><identifier>EISSN: 1662-8985</identifier><identifier>DOI: 10.4028/www.scientific.net/AMR.1117.261</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Classification ; Clustering ; Fuzzy control ; Networks ; System effectiveness ; Training</subject><ispartof>Advanced Materials Research, 2015-07, Vol.1117, p.261-264</ispartof><rights>2015 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jul 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1751-c21d98f782396189c1c420589da1d09f9d85e440a17f22d2473d8db4c5548d053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4034?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tusor, Balázs</creatorcontrib><creatorcontrib>Várkonyi-Kóczy, Annamária R.</creatorcontrib><title>A Hybrid Fuzzy-RBFN Filter for Data Classification</title><title>Advanced Materials Research</title><description>In this paper, a new filter network is presented that is based on Radial Base Function Networks (RBFNs). The output layer of the network is modified, in order to make it more effective in certain fuzzy control systems. The training of the network is solved by a clustering step, for which two different clustering methods are proposed. The suggested structure can efficiently be used for data classification.</description><subject>Classification</subject><subject>Clustering</subject><subject>Fuzzy control</subject><subject>Networks</subject><subject>System effectiveness</subject><subject>Training</subject><issn>1022-6680</issn><issn>1662-8985</issn><issn>1662-8985</issn><isbn>3038354872</isbn><isbn>9783038354871</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkE1LAzEURYMfoK3-hwEXuplpXiaZJCup1VqhKhRdhzTJ4JTpTE2mlPbXm1JBceXqLd7l3MtB6BpwRjERg81mkwVTuaaryspkjesGw-dZBgA8IwUcoXMoCpIKKdgx6uU4FzmjgpOT-MCEpEUh8BnqhbDAuKBA2Dkiw2SynfvKJuP1brdNZ3fjl2Rc1Z3zSdn65F53OhnVOoR9pe6qtrlAp6Wug7v8vn30Pn54G03S6evj02g4TQ1wBqkhYKUouSC5LEBIA4YSzIS0GiyWpbSCOUqxBl4SYgnluRV2Tg2Lmy1meR_dHLgr336uXejUsgrG1bVuXLsOCgRlAudY8Bi9-hNdtGvfxHUKuMSAJYd96vaQMr4NwbtSrXy11H6rAKu9YBUFqx_BKgpWUbDaC1ZRcCQMD4TO6yZ0znz8Kvon4wuKqYco</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Tusor, Balázs</creator><creator>Várkonyi-Kóczy, Annamária R.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20150701</creationdate><title>A Hybrid Fuzzy-RBFN Filter for Data Classification</title><author>Tusor, Balázs ; Várkonyi-Kóczy, Annamária R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1751-c21d98f782396189c1c420589da1d09f9d85e440a17f22d2473d8db4c5548d053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Clustering</topic><topic>Fuzzy control</topic><topic>Networks</topic><topic>System effectiveness</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tusor, Balázs</creatorcontrib><creatorcontrib>Várkonyi-Kóczy, Annamária R.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Advanced Materials Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tusor, Balázs</au><au>Várkonyi-Kóczy, Annamária R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Fuzzy-RBFN Filter for Data Classification</atitle><jtitle>Advanced Materials Research</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>1117</volume><spage>261</spage><epage>264</epage><pages>261-264</pages><issn>1022-6680</issn><issn>1662-8985</issn><eissn>1662-8985</eissn><isbn>3038354872</isbn><isbn>9783038354871</isbn><abstract>In this paper, a new filter network is presented that is based on Radial Base Function Networks (RBFNs). The output layer of the network is modified, in order to make it more effective in certain fuzzy control systems. The training of the network is solved by a clustering step, for which two different clustering methods are proposed. The suggested structure can efficiently be used for data classification.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMR.1117.261</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-6680
ispartof Advanced Materials Research, 2015-07, Vol.1117, p.261-264
issn 1022-6680
1662-8985
1662-8985
language eng
recordid cdi_proquest_miscellaneous_1845803087
source Scientific.net Journals
subjects Classification
Clustering
Fuzzy control
Networks
System effectiveness
Training
title A Hybrid Fuzzy-RBFN Filter for Data Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Fuzzy-RBFN%20Filter%20for%20Data%20Classification&rft.jtitle=Advanced%20Materials%20Research&rft.au=Tusor,%20Bal%C3%A1zs&rft.date=2015-07-01&rft.volume=1117&rft.spage=261&rft.epage=264&rft.pages=261-264&rft.issn=1022-6680&rft.eissn=1662-8985&rft.isbn=3038354872&rft.isbn_list=9783038354871&rft_id=info:doi/10.4028/www.scientific.net/AMR.1117.261&rft_dat=%3Cproquest_cross%3E1845803087%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790109717&rft_id=info:pmid/&rfr_iscdi=true