A Hybrid Fuzzy-RBFN Filter for Data Classification
In this paper, a new filter network is presented that is based on Radial Base Function Networks (RBFNs). The output layer of the network is modified, in order to make it more effective in certain fuzzy control systems. The training of the network is solved by a clustering step, for which two differe...
Gespeichert in:
Veröffentlicht in: | Advanced Materials Research 2015-07, Vol.1117, p.261-264 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 264 |
---|---|
container_issue | |
container_start_page | 261 |
container_title | Advanced Materials Research |
container_volume | 1117 |
creator | Tusor, Balázs Várkonyi-Kóczy, Annamária R. |
description | In this paper, a new filter network is presented that is based on Radial Base Function Networks (RBFNs). The output layer of the network is modified, in order to make it more effective in certain fuzzy control systems. The training of the network is solved by a clustering step, for which two different clustering methods are proposed. The suggested structure can efficiently be used for data classification. |
doi_str_mv | 10.4028/www.scientific.net/AMR.1117.261 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845803087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845803087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1751-c21d98f782396189c1c420589da1d09f9d85e440a17f22d2473d8db4c5548d053</originalsourceid><addsrcrecordid>eNqNkE1LAzEURYMfoK3-hwEXuplpXiaZJCup1VqhKhRdhzTJ4JTpTE2mlPbXm1JBceXqLd7l3MtB6BpwRjERg81mkwVTuaaryspkjesGw-dZBgA8IwUcoXMoCpIKKdgx6uU4FzmjgpOT-MCEpEUh8BnqhbDAuKBA2Dkiw2SynfvKJuP1brdNZ3fjl2Rc1Z3zSdn65F53OhnVOoR9pe6qtrlAp6Wug7v8vn30Pn54G03S6evj02g4TQ1wBqkhYKUouSC5LEBIA4YSzIS0GiyWpbSCOUqxBl4SYgnluRV2Tg2Lmy1meR_dHLgr336uXejUsgrG1bVuXLsOCgRlAudY8Bi9-hNdtGvfxHUKuMSAJYd96vaQMr4NwbtSrXy11H6rAKu9YBUFqx_BKgpWUbDaC1ZRcCQMD4TO6yZ0znz8Kvon4wuKqYco</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790109717</pqid></control><display><type>article</type><title>A Hybrid Fuzzy-RBFN Filter for Data Classification</title><source>Scientific.net Journals</source><creator>Tusor, Balázs ; Várkonyi-Kóczy, Annamária R.</creator><creatorcontrib>Tusor, Balázs ; Várkonyi-Kóczy, Annamária R.</creatorcontrib><description>In this paper, a new filter network is presented that is based on Radial Base Function Networks (RBFNs). The output layer of the network is modified, in order to make it more effective in certain fuzzy control systems. The training of the network is solved by a clustering step, for which two different clustering methods are proposed. The suggested structure can efficiently be used for data classification.</description><identifier>ISSN: 1022-6680</identifier><identifier>ISSN: 1662-8985</identifier><identifier>ISBN: 3038354872</identifier><identifier>ISBN: 9783038354871</identifier><identifier>EISSN: 1662-8985</identifier><identifier>DOI: 10.4028/www.scientific.net/AMR.1117.261</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Classification ; Clustering ; Fuzzy control ; Networks ; System effectiveness ; Training</subject><ispartof>Advanced Materials Research, 2015-07, Vol.1117, p.261-264</ispartof><rights>2015 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jul 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1751-c21d98f782396189c1c420589da1d09f9d85e440a17f22d2473d8db4c5548d053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4034?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tusor, Balázs</creatorcontrib><creatorcontrib>Várkonyi-Kóczy, Annamária R.</creatorcontrib><title>A Hybrid Fuzzy-RBFN Filter for Data Classification</title><title>Advanced Materials Research</title><description>In this paper, a new filter network is presented that is based on Radial Base Function Networks (RBFNs). The output layer of the network is modified, in order to make it more effective in certain fuzzy control systems. The training of the network is solved by a clustering step, for which two different clustering methods are proposed. The suggested structure can efficiently be used for data classification.</description><subject>Classification</subject><subject>Clustering</subject><subject>Fuzzy control</subject><subject>Networks</subject><subject>System effectiveness</subject><subject>Training</subject><issn>1022-6680</issn><issn>1662-8985</issn><issn>1662-8985</issn><isbn>3038354872</isbn><isbn>9783038354871</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkE1LAzEURYMfoK3-hwEXuplpXiaZJCup1VqhKhRdhzTJ4JTpTE2mlPbXm1JBceXqLd7l3MtB6BpwRjERg81mkwVTuaaryspkjesGw-dZBgA8IwUcoXMoCpIKKdgx6uU4FzmjgpOT-MCEpEUh8BnqhbDAuKBA2Dkiw2SynfvKJuP1brdNZ3fjl2Rc1Z3zSdn65F53OhnVOoR9pe6qtrlAp6Wug7v8vn30Pn54G03S6evj02g4TQ1wBqkhYKUouSC5LEBIA4YSzIS0GiyWpbSCOUqxBl4SYgnluRV2Tg2Lmy1meR_dHLgr336uXejUsgrG1bVuXLsOCgRlAudY8Bi9-hNdtGvfxHUKuMSAJYd96vaQMr4NwbtSrXy11H6rAKu9YBUFqx_BKgpWUbDaC1ZRcCQMD4TO6yZ0znz8Kvon4wuKqYco</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Tusor, Balázs</creator><creator>Várkonyi-Kóczy, Annamária R.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20150701</creationdate><title>A Hybrid Fuzzy-RBFN Filter for Data Classification</title><author>Tusor, Balázs ; Várkonyi-Kóczy, Annamária R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1751-c21d98f782396189c1c420589da1d09f9d85e440a17f22d2473d8db4c5548d053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Clustering</topic><topic>Fuzzy control</topic><topic>Networks</topic><topic>System effectiveness</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tusor, Balázs</creatorcontrib><creatorcontrib>Várkonyi-Kóczy, Annamária R.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Advanced Materials Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tusor, Balázs</au><au>Várkonyi-Kóczy, Annamária R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Fuzzy-RBFN Filter for Data Classification</atitle><jtitle>Advanced Materials Research</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>1117</volume><spage>261</spage><epage>264</epage><pages>261-264</pages><issn>1022-6680</issn><issn>1662-8985</issn><eissn>1662-8985</eissn><isbn>3038354872</isbn><isbn>9783038354871</isbn><abstract>In this paper, a new filter network is presented that is based on Radial Base Function Networks (RBFNs). The output layer of the network is modified, in order to make it more effective in certain fuzzy control systems. The training of the network is solved by a clustering step, for which two different clustering methods are proposed. The suggested structure can efficiently be used for data classification.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMR.1117.261</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-6680 |
ispartof | Advanced Materials Research, 2015-07, Vol.1117, p.261-264 |
issn | 1022-6680 1662-8985 1662-8985 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845803087 |
source | Scientific.net Journals |
subjects | Classification Clustering Fuzzy control Networks System effectiveness Training |
title | A Hybrid Fuzzy-RBFN Filter for Data Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Fuzzy-RBFN%20Filter%20for%20Data%20Classification&rft.jtitle=Advanced%20Materials%20Research&rft.au=Tusor,%20Bal%C3%A1zs&rft.date=2015-07-01&rft.volume=1117&rft.spage=261&rft.epage=264&rft.pages=261-264&rft.issn=1022-6680&rft.eissn=1662-8985&rft.isbn=3038354872&rft.isbn_list=9783038354871&rft_id=info:doi/10.4028/www.scientific.net/AMR.1117.261&rft_dat=%3Cproquest_cross%3E1845803087%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790109717&rft_id=info:pmid/&rfr_iscdi=true |