Big data driven decision making and multi-prior models collaboration for media restoration
Aiming at the restoration of degraded social network services media, this paper proposed a novel multi-prior models collaboration framework for image restoration with big data. Different from the traditional non-reference media restoration strategies, a big reference image set is adopted to provide...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2016-10, Vol.75 (20), p.12967-12982 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12982 |
---|---|
container_issue | 20 |
container_start_page | 12967 |
container_title | Multimedia tools and applications |
container_volume | 75 |
creator | Jiang, Feng Rho, Seungmin Chen, Bo-Wei Li, Kun Zhao, Debin |
description | Aiming at the restoration of degraded social network services media, this paper proposed a novel multi-prior models collaboration framework for image restoration with big data. Different from the traditional non-reference media restoration strategies, a big reference image set is adopted to provide the references and predictions of different popular prior models and accordingly guide the further prior collaboration. With these cues, the collaboration of multi-prior models is mathematically formulated as a ridge regression problem in this paper. Due to the computation complexity of dealing big reference data, scatter-matrix-based KRR is proposed which can achieve high accuracy and low complexity in big data related decision making task. Specifically, an iterative pursuit is proposed to obtain further refined and robust estimation. Five popular prior methods are applied to evaluate the effectiveness of the proposed multi-prior models collaboration. Compared with the traditional restoration strategies, the proposed framework improves the restoration performance significantly and provides a reasonable method for the relative exploration of big data driven decision making. |
doi_str_mv | 10.1007/s11042-014-2240-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845801275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4313398781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-2f855e725a25b2d9e4c247792557142da4e1809830dac06dbb068168d433ee813</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhosouH78AG8BL16qM2nSpEdd_IIFL3rxEtImXbK2zZq0gv_elN2DCJ5mmHne-Xiz7ALhGgHETUQERnNAllPKIBcH2QK5KHIhKB6mvJCpyAGPs5MYNwBYcsoW2fudWxOjR01McF92IMY2Ljo_kF5_uGFN9GBIP3Wjy7fB-UB6b2wXSeO7Ttc-6HFm27lhjdMk2Djuq2fZUau7aM_38TR7e7h_XT7lq5fH5-XtKm-KSow5bSXnVlCuKa-pqSxrKBOiopwLZNRoZlFCJQswuoHS1DWUEktpWFFYK7E4za52c7fBf05pv-pdbGy6b7B-igol4xKQCp7Qyz_oxk9hSNclqhRVQQFoonBHNcHHGGyr0uu9Dt8KQc1uq53bKrmtZreVSBq608TEDmsbfk3-V_QDxfGA-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1867932002</pqid></control><display><type>article</type><title>Big data driven decision making and multi-prior models collaboration for media restoration</title><source>Springer Online Journals Complete</source><creator>Jiang, Feng ; Rho, Seungmin ; Chen, Bo-Wei ; Li, Kun ; Zhao, Debin</creator><creatorcontrib>Jiang, Feng ; Rho, Seungmin ; Chen, Bo-Wei ; Li, Kun ; Zhao, Debin</creatorcontrib><description>Aiming at the restoration of degraded social network services media, this paper proposed a novel multi-prior models collaboration framework for image restoration with big data. Different from the traditional non-reference media restoration strategies, a big reference image set is adopted to provide the references and predictions of different popular prior models and accordingly guide the further prior collaboration. With these cues, the collaboration of multi-prior models is mathematically formulated as a ridge regression problem in this paper. Due to the computation complexity of dealing big reference data, scatter-matrix-based KRR is proposed which can achieve high accuracy and low complexity in big data related decision making task. Specifically, an iterative pursuit is proposed to obtain further refined and robust estimation. Five popular prior methods are applied to evaluate the effectiveness of the proposed multi-prior models collaboration. Compared with the traditional restoration strategies, the proposed framework improves the restoration performance significantly and provides a reasonable method for the relative exploration of big data driven decision making.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-014-2240-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Big Data ; Collaboration ; Complexity ; Computer Communication Networks ; Computer Science ; Cooperation ; Data management ; Data Structures and Information Theory ; Decision making ; Inverse problems ; Knowledge ; Mathematical models ; Media ; Multimedia Information Systems ; Performance evaluation ; Restoration ; Restoration strategies ; Social networks ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2016-10, Vol.75 (20), p.12967-12982</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Multimedia Tools and Applications is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-2f855e725a25b2d9e4c247792557142da4e1809830dac06dbb068168d433ee813</citedby><cites>FETCH-LOGICAL-c397t-2f855e725a25b2d9e4c247792557142da4e1809830dac06dbb068168d433ee813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-014-2240-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-014-2240-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Jiang, Feng</creatorcontrib><creatorcontrib>Rho, Seungmin</creatorcontrib><creatorcontrib>Chen, Bo-Wei</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Zhao, Debin</creatorcontrib><title>Big data driven decision making and multi-prior models collaboration for media restoration</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Aiming at the restoration of degraded social network services media, this paper proposed a novel multi-prior models collaboration framework for image restoration with big data. Different from the traditional non-reference media restoration strategies, a big reference image set is adopted to provide the references and predictions of different popular prior models and accordingly guide the further prior collaboration. With these cues, the collaboration of multi-prior models is mathematically formulated as a ridge regression problem in this paper. Due to the computation complexity of dealing big reference data, scatter-matrix-based KRR is proposed which can achieve high accuracy and low complexity in big data related decision making task. Specifically, an iterative pursuit is proposed to obtain further refined and robust estimation. Five popular prior methods are applied to evaluate the effectiveness of the proposed multi-prior models collaboration. Compared with the traditional restoration strategies, the proposed framework improves the restoration performance significantly and provides a reasonable method for the relative exploration of big data driven decision making.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Collaboration</subject><subject>Complexity</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Cooperation</subject><subject>Data management</subject><subject>Data Structures and Information Theory</subject><subject>Decision making</subject><subject>Inverse problems</subject><subject>Knowledge</subject><subject>Mathematical models</subject><subject>Media</subject><subject>Multimedia Information Systems</subject><subject>Performance evaluation</subject><subject>Restoration</subject><subject>Restoration strategies</subject><subject>Social networks</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAQhosouH78AG8BL16qM2nSpEdd_IIFL3rxEtImXbK2zZq0gv_elN2DCJ5mmHne-Xiz7ALhGgHETUQERnNAllPKIBcH2QK5KHIhKB6mvJCpyAGPs5MYNwBYcsoW2fudWxOjR01McF92IMY2Ljo_kF5_uGFN9GBIP3Wjy7fB-UB6b2wXSeO7Ttc-6HFm27lhjdMk2Djuq2fZUau7aM_38TR7e7h_XT7lq5fH5-XtKm-KSow5bSXnVlCuKa-pqSxrKBOiopwLZNRoZlFCJQswuoHS1DWUEktpWFFYK7E4za52c7fBf05pv-pdbGy6b7B-igol4xKQCp7Qyz_oxk9hSNclqhRVQQFoonBHNcHHGGyr0uu9Dt8KQc1uq53bKrmtZreVSBq608TEDmsbfk3-V_QDxfGA-w</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Jiang, Feng</creator><creator>Rho, Seungmin</creator><creator>Chen, Bo-Wei</creator><creator>Li, Kun</creator><creator>Zhao, Debin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20161001</creationdate><title>Big data driven decision making and multi-prior models collaboration for media restoration</title><author>Jiang, Feng ; Rho, Seungmin ; Chen, Bo-Wei ; Li, Kun ; Zhao, Debin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-2f855e725a25b2d9e4c247792557142da4e1809830dac06dbb068168d433ee813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Collaboration</topic><topic>Complexity</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Cooperation</topic><topic>Data management</topic><topic>Data Structures and Information Theory</topic><topic>Decision making</topic><topic>Inverse problems</topic><topic>Knowledge</topic><topic>Mathematical models</topic><topic>Media</topic><topic>Multimedia Information Systems</topic><topic>Performance evaluation</topic><topic>Restoration</topic><topic>Restoration strategies</topic><topic>Social networks</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Feng</creatorcontrib><creatorcontrib>Rho, Seungmin</creatorcontrib><creatorcontrib>Chen, Bo-Wei</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Zhao, Debin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Feng</au><au>Rho, Seungmin</au><au>Chen, Bo-Wei</au><au>Li, Kun</au><au>Zhao, Debin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Big data driven decision making and multi-prior models collaboration for media restoration</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>75</volume><issue>20</issue><spage>12967</spage><epage>12982</epage><pages>12967-12982</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Aiming at the restoration of degraded social network services media, this paper proposed a novel multi-prior models collaboration framework for image restoration with big data. Different from the traditional non-reference media restoration strategies, a big reference image set is adopted to provide the references and predictions of different popular prior models and accordingly guide the further prior collaboration. With these cues, the collaboration of multi-prior models is mathematically formulated as a ridge regression problem in this paper. Due to the computation complexity of dealing big reference data, scatter-matrix-based KRR is proposed which can achieve high accuracy and low complexity in big data related decision making task. Specifically, an iterative pursuit is proposed to obtain further refined and robust estimation. Five popular prior methods are applied to evaluate the effectiveness of the proposed multi-prior models collaboration. Compared with the traditional restoration strategies, the proposed framework improves the restoration performance significantly and provides a reasonable method for the relative exploration of big data driven decision making.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-014-2240-7</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2016-10, Vol.75 (20), p.12967-12982 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845801275 |
source | Springer Online Journals Complete |
subjects | Algorithms Big Data Collaboration Complexity Computer Communication Networks Computer Science Cooperation Data management Data Structures and Information Theory Decision making Inverse problems Knowledge Mathematical models Media Multimedia Information Systems Performance evaluation Restoration Restoration strategies Social networks Special Purpose and Application-Based Systems |
title | Big data driven decision making and multi-prior models collaboration for media restoration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Big%20data%20driven%20decision%20making%20and%20multi-prior%20models%20collaboration%20for%20media%20restoration&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Jiang,%20Feng&rft.date=2016-10-01&rft.volume=75&rft.issue=20&rft.spage=12967&rft.epage=12982&rft.pages=12967-12982&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-014-2240-7&rft_dat=%3Cproquest_cross%3E4313398781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1867932002&rft_id=info:pmid/&rfr_iscdi=true |