Asynchronism of ice shedding from the de-iced conductor based on heat transfer

When overhead line is de-iced using Joule-effect heating, which is one of the main methods for resisting ice disasters in cold regions, the ice layer on the conductor will always be shed by section. However, the asynchoronism of ice shedding based on heat transfer is ignored in almost all ice meltin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET science, measurement & technology measurement & technology, 2016-07, Vol.10 (4), p.389-395
Hauptverfasser: Yaoxuan, Wang, Xingliang, Jiang, Songhai, Fan, Zhigao, Meng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 395
container_issue 4
container_start_page 389
container_title IET science, measurement & technology
container_volume 10
creator Yaoxuan, Wang
Xingliang, Jiang
Songhai, Fan
Zhigao, Meng
description When overhead line is de-iced using Joule-effect heating, which is one of the main methods for resisting ice disasters in cold regions, the ice layer on the conductor will always be shed by section. However, the asynchoronism of ice shedding based on heat transfer is ignored in almost all ice melting models of de-iced conductors. On the basis of an ice-melting simulation of a three-dimensional model of a de-iced conductor, the effects of wind velocity and ambient temperature on the asynchoronism of ice shedding is analysed with the experimental results from a natural icing station. The influence of the two factors on the allowable current of de-iced is also discussed. The variation of wind velocity along the de-iced conductor is considered as the cause of the asynchoronism of ice shedding. The ice shedding rate is higher with lower wind velocity or higher ambient temperature. The relationships between the allowable current and wind velocity or ambient temperature are segmented, which could be a reference to the ice melting conducted by Joule-effect methods.
doi_str_mv 10.1049/iet-smt.2015.0258
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845800935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845800935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4019-9cdefe7240e97431ffdafcfdbdadd6c41b319282e5696d9c8e5cd475516a1aab3</originalsourceid><addsrcrecordid>eNqFkEFPwyAYQBujiXP6A7xx1EMn0NIWb3PZdMnUg_NMKHzYLm2Z0MXs30szYzxoPAHhvS9fXhRdEjwhOOU3NfSxb_sJxYRNMGXFUTQiOSNxUST4-PtO6Wl05v0GY5YxQkbR09TvO1U529W-RdagWgHyFWhdd2_IONuivgKkIQ4fGinb6Z3qrUOl9OFtO1SB7FHvZOcNuPPoxMjGw8XXOY5eF_P17CFePd8vZ9NVrFJMeMyVBgM5TTHwPE2IMVoaZXSppdaZSkmZEE4LCizjmeaqAKZ0mjNGMkmkLJNxdHWYu3X2fQe-F23tFTSN7MDuvCBFygqMecICSg6octZ7B0ZsXd1KtxcEi6GdCO1EaCeGdmJoF5zbg_NRN7D_XxAvj2t6t8CYFjzI1wd5wDZ257pQQizn64H64Wy1CWz8C_v3Yp90-5Nu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845800935</pqid></control><display><type>article</type><title>Asynchronism of ice shedding from the de-iced conductor based on heat transfer</title><source>Wiley Online Library Open Access</source><creator>Yaoxuan, Wang ; Xingliang, Jiang ; Songhai, Fan ; Zhigao, Meng</creator><creatorcontrib>Yaoxuan, Wang ; Xingliang, Jiang ; Songhai, Fan ; Zhigao, Meng</creatorcontrib><description>When overhead line is de-iced using Joule-effect heating, which is one of the main methods for resisting ice disasters in cold regions, the ice layer on the conductor will always be shed by section. However, the asynchoronism of ice shedding based on heat transfer is ignored in almost all ice melting models of de-iced conductors. On the basis of an ice-melting simulation of a three-dimensional model of a de-iced conductor, the effects of wind velocity and ambient temperature on the asynchoronism of ice shedding is analysed with the experimental results from a natural icing station. The influence of the two factors on the allowable current of de-iced is also discussed. The variation of wind velocity along the de-iced conductor is considered as the cause of the asynchoronism of ice shedding. The ice shedding rate is higher with lower wind velocity or higher ambient temperature. The relationships between the allowable current and wind velocity or ambient temperature are segmented, which could be a reference to the ice melting conducted by Joule-effect methods.</description><identifier>ISSN: 1751-8822</identifier><identifier>ISSN: 1751-8830</identifier><identifier>EISSN: 1751-8830</identifier><identifier>DOI: 10.1049/iet-smt.2015.0258</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>Ambient temperature ; asynchoronism ; Conductors (devices) ; conductors (electric) ; deiced conductor ; de‐icing ; Heat transfer ; ice shedding ; ice‐melting simulation ; Joule‐effect heating ; Melting ; power transmission protection ; Shedding ; Stations ; Three dimensional models ; three‐dimensional model ; Wind velocity</subject><ispartof>IET science, measurement &amp; technology, 2016-07, Vol.10 (4), p.389-395</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4019-9cdefe7240e97431ffdafcfdbdadd6c41b319282e5696d9c8e5cd475516a1aab3</citedby><cites>FETCH-LOGICAL-c4019-9cdefe7240e97431ffdafcfdbdadd6c41b319282e5696d9c8e5cd475516a1aab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-smt.2015.0258$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-smt.2015.0258$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,11543,27905,27906,45555,45556,46033,46457</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-smt.2015.0258$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Yaoxuan, Wang</creatorcontrib><creatorcontrib>Xingliang, Jiang</creatorcontrib><creatorcontrib>Songhai, Fan</creatorcontrib><creatorcontrib>Zhigao, Meng</creatorcontrib><title>Asynchronism of ice shedding from the de-iced conductor based on heat transfer</title><title>IET science, measurement &amp; technology</title><description>When overhead line is de-iced using Joule-effect heating, which is one of the main methods for resisting ice disasters in cold regions, the ice layer on the conductor will always be shed by section. However, the asynchoronism of ice shedding based on heat transfer is ignored in almost all ice melting models of de-iced conductors. On the basis of an ice-melting simulation of a three-dimensional model of a de-iced conductor, the effects of wind velocity and ambient temperature on the asynchoronism of ice shedding is analysed with the experimental results from a natural icing station. The influence of the two factors on the allowable current of de-iced is also discussed. The variation of wind velocity along the de-iced conductor is considered as the cause of the asynchoronism of ice shedding. The ice shedding rate is higher with lower wind velocity or higher ambient temperature. The relationships between the allowable current and wind velocity or ambient temperature are segmented, which could be a reference to the ice melting conducted by Joule-effect methods.</description><subject>Ambient temperature</subject><subject>asynchoronism</subject><subject>Conductors (devices)</subject><subject>conductors (electric)</subject><subject>deiced conductor</subject><subject>de‐icing</subject><subject>Heat transfer</subject><subject>ice shedding</subject><subject>ice‐melting simulation</subject><subject>Joule‐effect heating</subject><subject>Melting</subject><subject>power transmission protection</subject><subject>Shedding</subject><subject>Stations</subject><subject>Three dimensional models</subject><subject>three‐dimensional model</subject><subject>Wind velocity</subject><issn>1751-8822</issn><issn>1751-8830</issn><issn>1751-8830</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwyAYQBujiXP6A7xx1EMn0NIWb3PZdMnUg_NMKHzYLm2Z0MXs30szYzxoPAHhvS9fXhRdEjwhOOU3NfSxb_sJxYRNMGXFUTQiOSNxUST4-PtO6Wl05v0GY5YxQkbR09TvO1U529W-RdagWgHyFWhdd2_IONuivgKkIQ4fGinb6Z3qrUOl9OFtO1SB7FHvZOcNuPPoxMjGw8XXOY5eF_P17CFePd8vZ9NVrFJMeMyVBgM5TTHwPE2IMVoaZXSppdaZSkmZEE4LCizjmeaqAKZ0mjNGMkmkLJNxdHWYu3X2fQe-F23tFTSN7MDuvCBFygqMecICSg6octZ7B0ZsXd1KtxcEi6GdCO1EaCeGdmJoF5zbg_NRN7D_XxAvj2t6t8CYFjzI1wd5wDZ257pQQizn64H64Wy1CWz8C_v3Yp90-5Nu</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Yaoxuan, Wang</creator><creator>Xingliang, Jiang</creator><creator>Songhai, Fan</creator><creator>Zhigao, Meng</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201607</creationdate><title>Asynchronism of ice shedding from the de-iced conductor based on heat transfer</title><author>Yaoxuan, Wang ; Xingliang, Jiang ; Songhai, Fan ; Zhigao, Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4019-9cdefe7240e97431ffdafcfdbdadd6c41b319282e5696d9c8e5cd475516a1aab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Ambient temperature</topic><topic>asynchoronism</topic><topic>Conductors (devices)</topic><topic>conductors (electric)</topic><topic>deiced conductor</topic><topic>de‐icing</topic><topic>Heat transfer</topic><topic>ice shedding</topic><topic>ice‐melting simulation</topic><topic>Joule‐effect heating</topic><topic>Melting</topic><topic>power transmission protection</topic><topic>Shedding</topic><topic>Stations</topic><topic>Three dimensional models</topic><topic>three‐dimensional model</topic><topic>Wind velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaoxuan, Wang</creatorcontrib><creatorcontrib>Xingliang, Jiang</creatorcontrib><creatorcontrib>Songhai, Fan</creatorcontrib><creatorcontrib>Zhigao, Meng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IET science, measurement &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yaoxuan, Wang</au><au>Xingliang, Jiang</au><au>Songhai, Fan</au><au>Zhigao, Meng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asynchronism of ice shedding from the de-iced conductor based on heat transfer</atitle><jtitle>IET science, measurement &amp; technology</jtitle><date>2016-07</date><risdate>2016</risdate><volume>10</volume><issue>4</issue><spage>389</spage><epage>395</epage><pages>389-395</pages><issn>1751-8822</issn><issn>1751-8830</issn><eissn>1751-8830</eissn><abstract>When overhead line is de-iced using Joule-effect heating, which is one of the main methods for resisting ice disasters in cold regions, the ice layer on the conductor will always be shed by section. However, the asynchoronism of ice shedding based on heat transfer is ignored in almost all ice melting models of de-iced conductors. On the basis of an ice-melting simulation of a three-dimensional model of a de-iced conductor, the effects of wind velocity and ambient temperature on the asynchoronism of ice shedding is analysed with the experimental results from a natural icing station. The influence of the two factors on the allowable current of de-iced is also discussed. The variation of wind velocity along the de-iced conductor is considered as the cause of the asynchoronism of ice shedding. The ice shedding rate is higher with lower wind velocity or higher ambient temperature. The relationships between the allowable current and wind velocity or ambient temperature are segmented, which could be a reference to the ice melting conducted by Joule-effect methods.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-smt.2015.0258</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-8822
ispartof IET science, measurement & technology, 2016-07, Vol.10 (4), p.389-395
issn 1751-8822
1751-8830
1751-8830
language eng
recordid cdi_proquest_miscellaneous_1845800935
source Wiley Online Library Open Access
subjects Ambient temperature
asynchoronism
Conductors (devices)
conductors (electric)
deiced conductor
de‐icing
Heat transfer
ice shedding
ice‐melting simulation
Joule‐effect heating
Melting
power transmission protection
Shedding
Stations
Three dimensional models
three‐dimensional model
Wind velocity
title Asynchronism of ice shedding from the de-iced conductor based on heat transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asynchronism%20of%20ice%20shedding%20from%20the%20de-iced%20conductor%20based%20on%20heat%20transfer&rft.jtitle=IET%20science,%20measurement%20&%20technology&rft.au=Yaoxuan,%20Wang&rft.date=2016-07&rft.volume=10&rft.issue=4&rft.spage=389&rft.epage=395&rft.pages=389-395&rft.issn=1751-8822&rft.eissn=1751-8830&rft_id=info:doi/10.1049/iet-smt.2015.0258&rft_dat=%3Cproquest_24P%3E1845800935%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845800935&rft_id=info:pmid/&rfr_iscdi=true