Equitable Water Distribution in Main Irrigation Canals with Constrained Water Supply
In this study a novel configuration of the Water Level Difference Error method is introduced to speed up the error sharing in the context of Model Predictive Control (MPC). The potential application of the controller is examined. The main objective of this controller is fair distribution of water be...
Gespeichert in:
Veröffentlicht in: | Water resources management 2015-07, Vol.29 (9), p.3315-3328 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3328 |
---|---|
container_issue | 9 |
container_start_page | 3315 |
container_title | Water resources management |
container_volume | 29 |
creator | Hashemy Shahdany, S. M Maestre, J. M van Overloop, P. J |
description | In this study a novel configuration of the Water Level Difference Error method is introduced to speed up the error sharing in the context of Model Predictive Control (MPC). The potential application of the controller is examined. The main objective of this controller is fair distribution of water between upstream and downstream users in main canals suffering from water shortages. The scheme uses the Integrator-Delay (ID) model for canal pool responses in a model predictive controller. The designed controller is tested on an accurate simulation model of a large canal system, using four test scenarios. The scenarios suffer from limited water supply conditions that are imposed by a limitation on the canal inflow. The results show fast reactions in equitable sharing of water level deviations from target throughout the canal. Since, all the pools are involved in optimally managing the water shortage, significant improvements in operational performance of the canal are achieved. In addition, the operational performance of the designed controller is remarkably improved by applying a new strategy of target-bands instead of target-levels in the canal pools as it increases the flexibility of the controller in making appropriate decisions. |
doi_str_mv | 10.1007/s11269-015-1000-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845799696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845799696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-8a63cf818635188ca97762c4330b3bf9bffe5788ab9b43b508a977ac63b23b4e3</originalsourceid><addsrcrecordid>eNqF0ctKxDAUBuAgCo6XB3BlwY2bak6T5rKUOl5gxMWMuAxJTcdIp51JWmTe3tTOQlzoJiGH7z8QfoTOAF8Bxvw6AGRMphjyNL5xSvfQBHJOUmA53kcTLLM45BQO0VEIHxhHJfEELaab3nXa1DZ51Z31ya0LnXem71zbJK5JnnQ8Hr13S_09KnSj65B8uu49Kdom4gjs2y4979frenuCDqqI7OnuPkYvd9NF8ZDOnu8fi5tZWlLOulRoRspKgGAkByFKLTlnWUkJwYaYSpqqsjkXQhtpKDE5FoPQJSMmI4Zacowux71r3256Gzq1cqG0da0b2_ZBgaA5l5JJ9j_lGKgQADjSi1_0o-398GsFTBCeUUEHBaMqfRuCt5Vae7fSfqsAq6ESNVaiYiXDGysaM9mYCdE2S-t_bP4jdD6GKt0qvfQuqJd5FkHsUGaS5eQL8aGWCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683724840</pqid></control><display><type>article</type><title>Equitable Water Distribution in Main Irrigation Canals with Constrained Water Supply</title><source>SpringerLink Journals</source><creator>Hashemy Shahdany, S. M ; Maestre, J. M ; van Overloop, P. J</creator><creatorcontrib>Hashemy Shahdany, S. M ; Maestre, J. M ; van Overloop, P. J</creatorcontrib><description>In this study a novel configuration of the Water Level Difference Error method is introduced to speed up the error sharing in the context of Model Predictive Control (MPC). The potential application of the controller is examined. The main objective of this controller is fair distribution of water between upstream and downstream users in main canals suffering from water shortages. The scheme uses the Integrator-Delay (ID) model for canal pool responses in a model predictive controller. The designed controller is tested on an accurate simulation model of a large canal system, using four test scenarios. The scenarios suffer from limited water supply conditions that are imposed by a limitation on the canal inflow. The results show fast reactions in equitable sharing of water level deviations from target throughout the canal. Since, all the pools are involved in optimally managing the water shortage, significant improvements in operational performance of the canal are achieved. In addition, the operational performance of the designed controller is remarkably improved by applying a new strategy of target-bands instead of target-levels in the canal pools as it increases the flexibility of the controller in making appropriate decisions.</description><identifier>ISSN: 0920-4741</identifier><identifier>EISSN: 1573-1650</identifier><identifier>DOI: 10.1007/s11269-015-1000-4</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>Atmospheric Sciences ; Canals ; Civil Engineering ; Controllers ; Design ; Deviation ; Earth and Environmental Science ; Earth Sciences ; Environment ; Error analysis ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Irrigation ; Irrigation canals ; Irrigation water ; Mathematical models ; Pools ; Shortages ; simulation models ; Studies ; Water distribution ; Water levels ; Water resources management ; Water shortages ; Water supplies ; Water supply ; Water supply engineering</subject><ispartof>Water resources management, 2015-07, Vol.29 (9), p.3315-3328</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-8a63cf818635188ca97762c4330b3bf9bffe5788ab9b43b508a977ac63b23b4e3</citedby><cites>FETCH-LOGICAL-c476t-8a63cf818635188ca97762c4330b3bf9bffe5788ab9b43b508a977ac63b23b4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11269-015-1000-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11269-015-1000-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hashemy Shahdany, S. M</creatorcontrib><creatorcontrib>Maestre, J. M</creatorcontrib><creatorcontrib>van Overloop, P. J</creatorcontrib><title>Equitable Water Distribution in Main Irrigation Canals with Constrained Water Supply</title><title>Water resources management</title><addtitle>Water Resour Manage</addtitle><description>In this study a novel configuration of the Water Level Difference Error method is introduced to speed up the error sharing in the context of Model Predictive Control (MPC). The potential application of the controller is examined. The main objective of this controller is fair distribution of water between upstream and downstream users in main canals suffering from water shortages. The scheme uses the Integrator-Delay (ID) model for canal pool responses in a model predictive controller. The designed controller is tested on an accurate simulation model of a large canal system, using four test scenarios. The scenarios suffer from limited water supply conditions that are imposed by a limitation on the canal inflow. The results show fast reactions in equitable sharing of water level deviations from target throughout the canal. Since, all the pools are involved in optimally managing the water shortage, significant improvements in operational performance of the canal are achieved. In addition, the operational performance of the designed controller is remarkably improved by applying a new strategy of target-bands instead of target-levels in the canal pools as it increases the flexibility of the controller in making appropriate decisions.</description><subject>Atmospheric Sciences</subject><subject>Canals</subject><subject>Civil Engineering</subject><subject>Controllers</subject><subject>Design</subject><subject>Deviation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Error analysis</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Irrigation</subject><subject>Irrigation canals</subject><subject>Irrigation water</subject><subject>Mathematical models</subject><subject>Pools</subject><subject>Shortages</subject><subject>simulation models</subject><subject>Studies</subject><subject>Water distribution</subject><subject>Water levels</subject><subject>Water resources management</subject><subject>Water shortages</subject><subject>Water supplies</subject><subject>Water supply</subject><subject>Water supply engineering</subject><issn>0920-4741</issn><issn>1573-1650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqF0ctKxDAUBuAgCo6XB3BlwY2bak6T5rKUOl5gxMWMuAxJTcdIp51JWmTe3tTOQlzoJiGH7z8QfoTOAF8Bxvw6AGRMphjyNL5xSvfQBHJOUmA53kcTLLM45BQO0VEIHxhHJfEELaab3nXa1DZ51Z31ya0LnXem71zbJK5JnnQ8Hr13S_09KnSj65B8uu49Kdom4gjs2y4979frenuCDqqI7OnuPkYvd9NF8ZDOnu8fi5tZWlLOulRoRspKgGAkByFKLTlnWUkJwYaYSpqqsjkXQhtpKDE5FoPQJSMmI4Zacowux71r3256Gzq1cqG0da0b2_ZBgaA5l5JJ9j_lGKgQADjSi1_0o-398GsFTBCeUUEHBaMqfRuCt5Vae7fSfqsAq6ESNVaiYiXDGysaM9mYCdE2S-t_bP4jdD6GKt0qvfQuqJd5FkHsUGaS5eQL8aGWCQ</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Hashemy Shahdany, S. M</creator><creator>Maestre, J. M</creator><creator>van Overloop, P. J</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20150701</creationdate><title>Equitable Water Distribution in Main Irrigation Canals with Constrained Water Supply</title><author>Hashemy Shahdany, S. M ; Maestre, J. M ; van Overloop, P. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-8a63cf818635188ca97762c4330b3bf9bffe5788ab9b43b508a977ac63b23b4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atmospheric Sciences</topic><topic>Canals</topic><topic>Civil Engineering</topic><topic>Controllers</topic><topic>Design</topic><topic>Deviation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Error analysis</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Irrigation</topic><topic>Irrigation canals</topic><topic>Irrigation water</topic><topic>Mathematical models</topic><topic>Pools</topic><topic>Shortages</topic><topic>simulation models</topic><topic>Studies</topic><topic>Water distribution</topic><topic>Water levels</topic><topic>Water resources management</topic><topic>Water shortages</topic><topic>Water supplies</topic><topic>Water supply</topic><topic>Water supply engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashemy Shahdany, S. M</creatorcontrib><creatorcontrib>Maestre, J. M</creatorcontrib><creatorcontrib>van Overloop, P. J</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashemy Shahdany, S. M</au><au>Maestre, J. M</au><au>van Overloop, P. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equitable Water Distribution in Main Irrigation Canals with Constrained Water Supply</atitle><jtitle>Water resources management</jtitle><stitle>Water Resour Manage</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>29</volume><issue>9</issue><spage>3315</spage><epage>3328</epage><pages>3315-3328</pages><issn>0920-4741</issn><eissn>1573-1650</eissn><abstract>In this study a novel configuration of the Water Level Difference Error method is introduced to speed up the error sharing in the context of Model Predictive Control (MPC). The potential application of the controller is examined. The main objective of this controller is fair distribution of water between upstream and downstream users in main canals suffering from water shortages. The scheme uses the Integrator-Delay (ID) model for canal pool responses in a model predictive controller. The designed controller is tested on an accurate simulation model of a large canal system, using four test scenarios. The scenarios suffer from limited water supply conditions that are imposed by a limitation on the canal inflow. The results show fast reactions in equitable sharing of water level deviations from target throughout the canal. Since, all the pools are involved in optimally managing the water shortage, significant improvements in operational performance of the canal are achieved. In addition, the operational performance of the designed controller is remarkably improved by applying a new strategy of target-bands instead of target-levels in the canal pools as it increases the flexibility of the controller in making appropriate decisions.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><doi>10.1007/s11269-015-1000-4</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-4741 |
ispartof | Water resources management, 2015-07, Vol.29 (9), p.3315-3328 |
issn | 0920-4741 1573-1650 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845799696 |
source | SpringerLink Journals |
subjects | Atmospheric Sciences Canals Civil Engineering Controllers Design Deviation Earth and Environmental Science Earth Sciences Environment Error analysis Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology/Water Resources Irrigation Irrigation canals Irrigation water Mathematical models Pools Shortages simulation models Studies Water distribution Water levels Water resources management Water shortages Water supplies Water supply Water supply engineering |
title | Equitable Water Distribution in Main Irrigation Canals with Constrained Water Supply |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A03%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equitable%20Water%20Distribution%20in%20Main%20Irrigation%20Canals%20with%20Constrained%20Water%20Supply&rft.jtitle=Water%20resources%20management&rft.au=Hashemy%20Shahdany,%20S.%20M&rft.date=2015-07-01&rft.volume=29&rft.issue=9&rft.spage=3315&rft.epage=3328&rft.pages=3315-3328&rft.issn=0920-4741&rft.eissn=1573-1650&rft_id=info:doi/10.1007/s11269-015-1000-4&rft_dat=%3Cproquest_cross%3E1845799696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1683724840&rft_id=info:pmid/&rfr_iscdi=true |