Simulation of Environmentally-Assisted Material Degradation by a Thermodynamically Consistent Phase-Field Model

Environmentally-assisted material degradation involves mass transport and mechanical processes interacting in the material. A well-known example is hydrogen-induced stress-corrosion cracking. One major challenge within this scope is the quantification of the coupling mechanisms in question. The comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key Engineering Materials 2016-09, Vol.713, p.38-41
1. Verfasser: Falkenberg, Rainer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue
container_start_page 38
container_title Key Engineering Materials
container_volume 713
creator Falkenberg, Rainer
description Environmentally-assisted material degradation involves mass transport and mechanical processes interacting in the material. A well-known example is hydrogen-induced stress-corrosion cracking. One major challenge within this scope is the quantification of the coupling mechanisms in question. The computational modeling of environmentally-assisted cracks is the key objective ofthis investigation and realised within the theory of gradient-extended dissipative continua with length-scales. The modeling of sharp crack discontinuities is replaced by a diffusive crack model based onthe introduction of a crack phase-field to maintain the evolution of complex crack topologies. Withina thermodynamical framework allowing for mechanical and mass transport processes the crack phase-field is capable to model crack initiation and propagation bythe finite element method. As complexcrack situations such as crack initiation, curvilinear crack patterns and crack branching are usuallyhard to realise with sharp crack models, they can be assessedwithout the requirement of a predefinedcrack path within this method. The numerical modeling of a showcase demonstrates a crack initiationas well as a crack propagation situation with respect to the determination of stress-intensity factors; acrack deviation situation with a curvilinear crack path is modeled by the introduction of a geometricalperturbation and a locally enhanced species concentration
doi_str_mv 10.4028/www.scientific.net/KEM.713.38
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845798198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4199876811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3018-8bd6407799dbf029a05aa79f7d95de842c8d0828a8c7e3d9dbb6f1ff319057623</originalsourceid><addsrcrecordid>eNqNkUtrGzEURkXTQh7tfxgIhWxmrMfMSFqUYBwnLU1Ioe5ayHrUChrJkcY1_veV40BCVllpcc_3XXEPAF8RbFqI2WS73TZZORNGZ51qghknP-d3DUWkIewDOEF9j2tOeXcETgkkjHQU9fhjGUBEas5wfwxOc36AkCCGuhMQf7th4-XoYqiirebhn0sxDGWB9H5XT3N2eTS6upOjSU766sr8TVIfAstdJavFyqQh6l2Qg1P7UDWL4SkVxurXSmZTXzvjS0XUxn8Gn6z02Xx5fs_An-v5Yva9vr2_-TGb3taKQMRqttR9CynlXC8txFzCTkrKLdW804a1WDENGWaSKWqILtSyt8hagjjsaI_JGbg49K5TfNyYPIrBZWW8l8HETRaItR3lDHFW0PM36EPcpFB-VyjclgMiuKe-HSiVYs7JWLFObpBpJxAUezeiuBEvbkRxI4obUdwIss9fHvJjkqEcR61erXlXw39L4590</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1824716108</pqid></control><display><type>article</type><title>Simulation of Environmentally-Assisted Material Degradation by a Thermodynamically Consistent Phase-Field Model</title><source>Scientific.net Journals</source><creator>Falkenberg, Rainer</creator><creatorcontrib>Falkenberg, Rainer</creatorcontrib><description>Environmentally-assisted material degradation involves mass transport and mechanical processes interacting in the material. A well-known example is hydrogen-induced stress-corrosion cracking. One major challenge within this scope is the quantification of the coupling mechanisms in question. The computational modeling of environmentally-assisted cracks is the key objective ofthis investigation and realised within the theory of gradient-extended dissipative continua with length-scales. The modeling of sharp crack discontinuities is replaced by a diffusive crack model based onthe introduction of a crack phase-field to maintain the evolution of complex crack topologies. Withina thermodynamical framework allowing for mechanical and mass transport processes the crack phase-field is capable to model crack initiation and propagation bythe finite element method. As complexcrack situations such as crack initiation, curvilinear crack patterns and crack branching are usuallyhard to realise with sharp crack models, they can be assessedwithout the requirement of a predefinedcrack path within this method. The numerical modeling of a showcase demonstrates a crack initiationas well as a crack propagation situation with respect to the determination of stress-intensity factors; acrack deviation situation with a curvilinear crack path is modeled by the introduction of a geometricalperturbation and a locally enhanced species concentration</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>ISBN: 3038357162</identifier><identifier>ISBN: 9783038357162</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.713.38</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Computer simulation ; Crack initiation ; Crack propagation ; Cracks ; Degradation ; Deviation ; Energy ; Fracture mechanics ; Mathematical models ; Propagation ; Simulation</subject><ispartof>Key Engineering Materials, 2016-09, Vol.713, p.38-41</ispartof><rights>2016 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3018-8bd6407799dbf029a05aa79f7d95de842c8d0828a8c7e3d9dbb6f1ff319057623</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4286?width=600</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Falkenberg, Rainer</creatorcontrib><title>Simulation of Environmentally-Assisted Material Degradation by a Thermodynamically Consistent Phase-Field Model</title><title>Key Engineering Materials</title><description>Environmentally-assisted material degradation involves mass transport and mechanical processes interacting in the material. A well-known example is hydrogen-induced stress-corrosion cracking. One major challenge within this scope is the quantification of the coupling mechanisms in question. The computational modeling of environmentally-assisted cracks is the key objective ofthis investigation and realised within the theory of gradient-extended dissipative continua with length-scales. The modeling of sharp crack discontinuities is replaced by a diffusive crack model based onthe introduction of a crack phase-field to maintain the evolution of complex crack topologies. Withina thermodynamical framework allowing for mechanical and mass transport processes the crack phase-field is capable to model crack initiation and propagation bythe finite element method. As complexcrack situations such as crack initiation, curvilinear crack patterns and crack branching are usuallyhard to realise with sharp crack models, they can be assessedwithout the requirement of a predefinedcrack path within this method. The numerical modeling of a showcase demonstrates a crack initiationas well as a crack propagation situation with respect to the determination of stress-intensity factors; acrack deviation situation with a curvilinear crack path is modeled by the introduction of a geometricalperturbation and a locally enhanced species concentration</description><subject>Computer simulation</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Degradation</subject><subject>Deviation</subject><subject>Energy</subject><subject>Fracture mechanics</subject><subject>Mathematical models</subject><subject>Propagation</subject><subject>Simulation</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><isbn>3038357162</isbn><isbn>9783038357162</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkUtrGzEURkXTQh7tfxgIhWxmrMfMSFqUYBwnLU1Ioe5ayHrUChrJkcY1_veV40BCVllpcc_3XXEPAF8RbFqI2WS73TZZORNGZ51qghknP-d3DUWkIewDOEF9j2tOeXcETgkkjHQU9fhjGUBEas5wfwxOc36AkCCGuhMQf7th4-XoYqiirebhn0sxDGWB9H5XT3N2eTS6upOjSU766sr8TVIfAstdJavFyqQh6l2Qg1P7UDWL4SkVxurXSmZTXzvjS0XUxn8Gn6z02Xx5fs_An-v5Yva9vr2_-TGb3taKQMRqttR9CynlXC8txFzCTkrKLdW804a1WDENGWaSKWqILtSyt8hagjjsaI_JGbg49K5TfNyYPIrBZWW8l8HETRaItR3lDHFW0PM36EPcpFB-VyjclgMiuKe-HSiVYs7JWLFObpBpJxAUezeiuBEvbkRxI4obUdwIss9fHvJjkqEcR61erXlXw39L4590</recordid><startdate>20160930</startdate><enddate>20160930</enddate><creator>Falkenberg, Rainer</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SE</scope></search><sort><creationdate>20160930</creationdate><title>Simulation of Environmentally-Assisted Material Degradation by a Thermodynamically Consistent Phase-Field Model</title><author>Falkenberg, Rainer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3018-8bd6407799dbf029a05aa79f7d95de842c8d0828a8c7e3d9dbb6f1ff319057623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer simulation</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Degradation</topic><topic>Deviation</topic><topic>Energy</topic><topic>Fracture mechanics</topic><topic>Mathematical models</topic><topic>Propagation</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falkenberg, Rainer</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Corrosion Abstracts</collection><jtitle>Key Engineering Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falkenberg, Rainer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Environmentally-Assisted Material Degradation by a Thermodynamically Consistent Phase-Field Model</atitle><jtitle>Key Engineering Materials</jtitle><date>2016-09-30</date><risdate>2016</risdate><volume>713</volume><spage>38</spage><epage>41</epage><pages>38-41</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><isbn>3038357162</isbn><isbn>9783038357162</isbn><abstract>Environmentally-assisted material degradation involves mass transport and mechanical processes interacting in the material. A well-known example is hydrogen-induced stress-corrosion cracking. One major challenge within this scope is the quantification of the coupling mechanisms in question. The computational modeling of environmentally-assisted cracks is the key objective ofthis investigation and realised within the theory of gradient-extended dissipative continua with length-scales. The modeling of sharp crack discontinuities is replaced by a diffusive crack model based onthe introduction of a crack phase-field to maintain the evolution of complex crack topologies. Withina thermodynamical framework allowing for mechanical and mass transport processes the crack phase-field is capable to model crack initiation and propagation bythe finite element method. As complexcrack situations such as crack initiation, curvilinear crack patterns and crack branching are usuallyhard to realise with sharp crack models, they can be assessedwithout the requirement of a predefinedcrack path within this method. The numerical modeling of a showcase demonstrates a crack initiationas well as a crack propagation situation with respect to the determination of stress-intensity factors; acrack deviation situation with a curvilinear crack path is modeled by the introduction of a geometricalperturbation and a locally enhanced species concentration</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.713.38</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key Engineering Materials, 2016-09, Vol.713, p.38-41
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_proquest_miscellaneous_1845798198
source Scientific.net Journals
subjects Computer simulation
Crack initiation
Crack propagation
Cracks
Degradation
Deviation
Energy
Fracture mechanics
Mathematical models
Propagation
Simulation
title Simulation of Environmentally-Assisted Material Degradation by a Thermodynamically Consistent Phase-Field Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A49%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Environmentally-Assisted%20Material%20Degradation%20by%20a%20Thermodynamically%20Consistent%20Phase-Field%20Model&rft.jtitle=Key%20Engineering%20Materials&rft.au=Falkenberg,%20Rainer&rft.date=2016-09-30&rft.volume=713&rft.spage=38&rft.epage=41&rft.pages=38-41&rft.issn=1013-9826&rft.eissn=1662-9795&rft.isbn=3038357162&rft.isbn_list=9783038357162&rft_id=info:doi/10.4028/www.scientific.net/KEM.713.38&rft_dat=%3Cproquest_cross%3E4199876811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1824716108&rft_id=info:pmid/&rfr_iscdi=true