Crack Growth Resistance in Fibre Reinforced Geopolymer Concrete Exposed to Sustained Extreme Temperatures
Portland cement concrete (PCC) is now second only to potable water in per capita consumption. And notwithstanding its numerous benefits, Portland cement itself is responsible for between 4 to 5% of the world’s manmade greenhouse gas emissions. In this context, geopolymer concrete is a promising alte...
Gespeichert in:
Veröffentlicht in: | Key Engineering Materials 2016-09, Vol.711, p.511-518 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 518 |
---|---|
container_issue | |
container_start_page | 511 |
container_title | Key Engineering Materials |
container_volume | 711 |
creator | Bindiganavile, Vivek Boluk, Yaman Goncalves, Jose R.A. |
description | Portland cement concrete (PCC) is now second only to potable water in per capita consumption. And notwithstanding its numerous benefits, Portland cement itself is responsible for between 4 to 5% of the world’s manmade greenhouse gas emissions. In this context, geopolymer concrete is a promising alternative, wherein the Portland cement binder is replaced entirely by supplementary cementitious materials triggered by alkaline activators. Relatively little is known on the fracture response of this system, especially when exposed to extreme temperatures. The study reported here focused on the crack growth response of such a system prepared with Class F fly ash and reinforced with steel and polymeric fibres up to 1% volume fraction. The geopolymerization was effected with a blend of sodium hydroxide and sodium silicate to achieve a compressive strength of 30 MPa at 28 days. The resulting geopolymer concrete was subjected to temperatures between-30 oC to 300 oC, sustained for 2 hours. A fibre blend of steel to polypropylene in the mass ratio of 4:1 was incorporated. Based on the results, four different stages for fracture behaviour were identified with superior fibre efficiency seen at sub-zero temperatures. |
doi_str_mv | 10.4028/www.scientific.net/KEM.711.511 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845797943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4192052031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3451-85587a1bcdc9f9a8533c69c37af34cdec9ad5e1648ed9ece1c7218f10226023c3</originalsourceid><addsrcrecordid>eNqNkV1rFTEQhhc_wFr7HxYE8Wa3mWSzm9yIcjg9FiuC1uuQzs7S1LPJmmQ57b83cgSlV16FZJ68M8xTVW-AtR3j6vxwOLQJHfnsJoetp3z-afu5HQBaCfCkOoG-540etHxanelBCSaUkD0H_azUGIhGK96_qF6mdMeYAAXypHKbaPFHvYvhkG_rr5RcytYj1c7XF-4mUnlzfgoRaax3FJawf5gp1pvgMVKmenu_hFRqOdTf1vLX-XLZ3udIM9XXNC8UbV4jpVfV88nuE539OU-r7xfb683H5urL7nLz4apB0UlolJRqsHCDI-pJWyWFwF6jGOwkOhwJtR0lQd8pGjUhAQ4c1ASM855xgeK0envMXWL4uVLKZnYJab-3nsKaDKhODmVLnSjo60foXVijL9MVinMJHR9Yod4dKYwhpUiTWaKbbXwwwMxvM6aYMX_NmGLGFDOmmDHFTAl4fwzI0fqUCW__6fN_Eb8Ak2WeSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822514270</pqid></control><display><type>article</type><title>Crack Growth Resistance in Fibre Reinforced Geopolymer Concrete Exposed to Sustained Extreme Temperatures</title><source>Scientific.net Journals</source><creator>Bindiganavile, Vivek ; Boluk, Yaman ; Goncalves, Jose R.A.</creator><creatorcontrib>Bindiganavile, Vivek ; Boluk, Yaman ; Goncalves, Jose R.A.</creatorcontrib><description>Portland cement concrete (PCC) is now second only to potable water in per capita consumption. And notwithstanding its numerous benefits, Portland cement itself is responsible for between 4 to 5% of the world’s manmade greenhouse gas emissions. In this context, geopolymer concrete is a promising alternative, wherein the Portland cement binder is replaced entirely by supplementary cementitious materials triggered by alkaline activators. Relatively little is known on the fracture response of this system, especially when exposed to extreme temperatures. The study reported here focused on the crack growth response of such a system prepared with Class F fly ash and reinforced with steel and polymeric fibres up to 1% volume fraction. The geopolymerization was effected with a blend of sodium hydroxide and sodium silicate to achieve a compressive strength of 30 MPa at 28 days. The resulting geopolymer concrete was subjected to temperatures between-30 oC to 300 oC, sustained for 2 hours. A fibre blend of steel to polypropylene in the mass ratio of 4:1 was incorporated. Based on the results, four different stages for fracture behaviour were identified with superior fibre efficiency seen at sub-zero temperatures.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>ISBN: 9783038356219</identifier><identifier>ISBN: 3038356212</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.711.511</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Compressive strength ; Concretes ; Crack propagation ; Exposure ; Fibre ; Fracture mechanics ; Portland cements ; Steels</subject><ispartof>Key Engineering Materials, 2016-09, Vol.711, p.511-518</ispartof><rights>2016 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3451-85587a1bcdc9f9a8533c69c37af34cdec9ad5e1648ed9ece1c7218f10226023c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4199?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bindiganavile, Vivek</creatorcontrib><creatorcontrib>Boluk, Yaman</creatorcontrib><creatorcontrib>Goncalves, Jose R.A.</creatorcontrib><title>Crack Growth Resistance in Fibre Reinforced Geopolymer Concrete Exposed to Sustained Extreme Temperatures</title><title>Key Engineering Materials</title><description>Portland cement concrete (PCC) is now second only to potable water in per capita consumption. And notwithstanding its numerous benefits, Portland cement itself is responsible for between 4 to 5% of the world’s manmade greenhouse gas emissions. In this context, geopolymer concrete is a promising alternative, wherein the Portland cement binder is replaced entirely by supplementary cementitious materials triggered by alkaline activators. Relatively little is known on the fracture response of this system, especially when exposed to extreme temperatures. The study reported here focused on the crack growth response of such a system prepared with Class F fly ash and reinforced with steel and polymeric fibres up to 1% volume fraction. The geopolymerization was effected with a blend of sodium hydroxide and sodium silicate to achieve a compressive strength of 30 MPa at 28 days. The resulting geopolymer concrete was subjected to temperatures between-30 oC to 300 oC, sustained for 2 hours. A fibre blend of steel to polypropylene in the mass ratio of 4:1 was incorporated. Based on the results, four different stages for fracture behaviour were identified with superior fibre efficiency seen at sub-zero temperatures.</description><subject>Compressive strength</subject><subject>Concretes</subject><subject>Crack propagation</subject><subject>Exposure</subject><subject>Fibre</subject><subject>Fracture mechanics</subject><subject>Portland cements</subject><subject>Steels</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><isbn>9783038356219</isbn><isbn>3038356212</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkV1rFTEQhhc_wFr7HxYE8Wa3mWSzm9yIcjg9FiuC1uuQzs7S1LPJmmQ57b83cgSlV16FZJ68M8xTVW-AtR3j6vxwOLQJHfnsJoetp3z-afu5HQBaCfCkOoG-540etHxanelBCSaUkD0H_azUGIhGK96_qF6mdMeYAAXypHKbaPFHvYvhkG_rr5RcytYj1c7XF-4mUnlzfgoRaax3FJawf5gp1pvgMVKmenu_hFRqOdTf1vLX-XLZ3udIM9XXNC8UbV4jpVfV88nuE539OU-r7xfb683H5urL7nLz4apB0UlolJRqsHCDI-pJWyWFwF6jGOwkOhwJtR0lQd8pGjUhAQ4c1ASM855xgeK0envMXWL4uVLKZnYJab-3nsKaDKhODmVLnSjo60foXVijL9MVinMJHR9Yod4dKYwhpUiTWaKbbXwwwMxvM6aYMX_NmGLGFDOmmDHFTAl4fwzI0fqUCW__6fN_Eb8Ak2WeSg</recordid><startdate>20160923</startdate><enddate>20160923</enddate><creator>Bindiganavile, Vivek</creator><creator>Boluk, Yaman</creator><creator>Goncalves, Jose R.A.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160923</creationdate><title>Crack Growth Resistance in Fibre Reinforced Geopolymer Concrete Exposed to Sustained Extreme Temperatures</title><author>Bindiganavile, Vivek ; Boluk, Yaman ; Goncalves, Jose R.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3451-85587a1bcdc9f9a8533c69c37af34cdec9ad5e1648ed9ece1c7218f10226023c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Compressive strength</topic><topic>Concretes</topic><topic>Crack propagation</topic><topic>Exposure</topic><topic>Fibre</topic><topic>Fracture mechanics</topic><topic>Portland cements</topic><topic>Steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bindiganavile, Vivek</creatorcontrib><creatorcontrib>Boluk, Yaman</creatorcontrib><creatorcontrib>Goncalves, Jose R.A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Key Engineering Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bindiganavile, Vivek</au><au>Boluk, Yaman</au><au>Goncalves, Jose R.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crack Growth Resistance in Fibre Reinforced Geopolymer Concrete Exposed to Sustained Extreme Temperatures</atitle><jtitle>Key Engineering Materials</jtitle><date>2016-09-23</date><risdate>2016</risdate><volume>711</volume><spage>511</spage><epage>518</epage><pages>511-518</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><isbn>9783038356219</isbn><isbn>3038356212</isbn><abstract>Portland cement concrete (PCC) is now second only to potable water in per capita consumption. And notwithstanding its numerous benefits, Portland cement itself is responsible for between 4 to 5% of the world’s manmade greenhouse gas emissions. In this context, geopolymer concrete is a promising alternative, wherein the Portland cement binder is replaced entirely by supplementary cementitious materials triggered by alkaline activators. Relatively little is known on the fracture response of this system, especially when exposed to extreme temperatures. The study reported here focused on the crack growth response of such a system prepared with Class F fly ash and reinforced with steel and polymeric fibres up to 1% volume fraction. The geopolymerization was effected with a blend of sodium hydroxide and sodium silicate to achieve a compressive strength of 30 MPa at 28 days. The resulting geopolymer concrete was subjected to temperatures between-30 oC to 300 oC, sustained for 2 hours. A fibre blend of steel to polypropylene in the mass ratio of 4:1 was incorporated. Based on the results, four different stages for fracture behaviour were identified with superior fibre efficiency seen at sub-zero temperatures.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.711.511</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1013-9826 |
ispartof | Key Engineering Materials, 2016-09, Vol.711, p.511-518 |
issn | 1013-9826 1662-9795 1662-9795 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845797943 |
source | Scientific.net Journals |
subjects | Compressive strength Concretes Crack propagation Exposure Fibre Fracture mechanics Portland cements Steels |
title | Crack Growth Resistance in Fibre Reinforced Geopolymer Concrete Exposed to Sustained Extreme Temperatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crack%20Growth%20Resistance%20in%20Fibre%20Reinforced%20Geopolymer%20Concrete%20Exposed%20to%20Sustained%20Extreme%20Temperatures&rft.jtitle=Key%20Engineering%20Materials&rft.au=Bindiganavile,%20Vivek&rft.date=2016-09-23&rft.volume=711&rft.spage=511&rft.epage=518&rft.pages=511-518&rft.issn=1013-9826&rft.eissn=1662-9795&rft.isbn=9783038356219&rft.isbn_list=3038356212&rft_id=info:doi/10.4028/www.scientific.net/KEM.711.511&rft_dat=%3Cproquest_cross%3E4192052031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1822514270&rft_id=info:pmid/&rfr_iscdi=true |