A Wellbore Stability Model for a Deviated Well in a Transversely Isotropic Formation Considering Poroelastic Effects

To analyse wellbore stability phenomena when drilling through a transversely isotropic formation such as shale, a wellbore stability model is developed based on the coordinate transformation method and complex variable elasticity theory. In order to comprehensively consider the anisotropies in the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rock mechanics and rock engineering 2016-09, Vol.49 (9), p.3671-3686
Hauptverfasser: Liu, Ming, Jin, Yan, Lu, Yunhu, Chen, Mian, Hou, Bing, Chen, Wenyi, Wen, Xin, Yu, Xiaoning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3686
container_issue 9
container_start_page 3671
container_title Rock mechanics and rock engineering
container_volume 49
creator Liu, Ming
Jin, Yan
Lu, Yunhu
Chen, Mian
Hou, Bing
Chen, Wenyi
Wen, Xin
Yu, Xiaoning
description To analyse wellbore stability phenomena when drilling through a transversely isotropic formation such as shale, a wellbore stability model is developed based on the coordinate transformation method and complex variable elasticity theory. In order to comprehensively consider the anisotropies in the transversely isotropic formation, the model includes the followings: 1. the elastic anisotropy due to the sedimentation effect and naturally developed fractures and 2. the strength anisotropy due to the poor cementation between bedding planes and natural fractures. The model is further generalized by accounting for an arbitrary wellbore trajectory under an arbitrary in situ stress orientation. Next, the model is used in a parametric study that includes factors such as elastic anisotropy, strength anisotropy, multiple weak planes, in situ stress anisotropy, and poroelastic anisotropy, all of which can have a great influence on wellbore stability. Finally, a correction for a frequently used failure criterion has been made to ensure that the newly developed model is comprehensive and accurate for wellbore stability analyses in highly heterogeneous formations.
doi_str_mv 10.1007/s00603-016-1019-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845797414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4169026751</sourcerecordid><originalsourceid>FETCH-LOGICAL-a372t-c61d5c477e20ffc89836cf443776c970e4717e9fc1844087acaeea68a63ed133</originalsourceid><addsrcrecordid>eNp1kUFLAzEQhYMoWKs_wFvAi5fVZJMmu8dSWy0oChb0FtLsRFK2mzVJC_33ptaDCJ4GZr43zLyH0CUlN5QQeRsJEYQVhIqCEloX1REaUM54wUfs_RgNiCxZUQpWnqKzGFeE5KGsBiiN8Ru07dIHwK9JL13r0g4_-QZabH3AGt_B1ukEzTeHXZdbi6C7uIUQod3hefQp-N4ZPPNhrZPzHZ74LroGgus-8IsPHlodUyam1oJJ8RydWN1GuPipQ7SYTReTh-Lx-X4-GT8WmskyFUbQZmS4lFASa01VV0wYy_PhUphaEuCSSqitoRXnpJLaaAAtKi0YNJSxIbo-rO2D_9xATGrtoslf6A78JqosG8la8mzFEF39QVd-E7p8XKaoKGvBhMwUPVAm-BgDWNUHt9ZhpyhR-xjUIQaVY1D7GFSVNeVBE_u9HRB-bf5X9AVh9IrV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816296367</pqid></control><display><type>article</type><title>A Wellbore Stability Model for a Deviated Well in a Transversely Isotropic Formation Considering Poroelastic Effects</title><source>Springer Nature - Complete Springer Journals</source><creator>Liu, Ming ; Jin, Yan ; Lu, Yunhu ; Chen, Mian ; Hou, Bing ; Chen, Wenyi ; Wen, Xin ; Yu, Xiaoning</creator><creatorcontrib>Liu, Ming ; Jin, Yan ; Lu, Yunhu ; Chen, Mian ; Hou, Bing ; Chen, Wenyi ; Wen, Xin ; Yu, Xiaoning</creatorcontrib><description>To analyse wellbore stability phenomena when drilling through a transversely isotropic formation such as shale, a wellbore stability model is developed based on the coordinate transformation method and complex variable elasticity theory. In order to comprehensively consider the anisotropies in the transversely isotropic formation, the model includes the followings: 1. the elastic anisotropy due to the sedimentation effect and naturally developed fractures and 2. the strength anisotropy due to the poor cementation between bedding planes and natural fractures. The model is further generalized by accounting for an arbitrary wellbore trajectory under an arbitrary in situ stress orientation. Next, the model is used in a parametric study that includes factors such as elastic anisotropy, strength anisotropy, multiple weak planes, in situ stress anisotropy, and poroelastic anisotropy, all of which can have a great influence on wellbore stability. Finally, a correction for a frequently used failure criterion has been made to ensure that the newly developed model is comprehensive and accurate for wellbore stability analyses in highly heterogeneous formations.</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-016-1019-8</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Anisotropy ; Civil Engineering ; Earth and Environmental Science ; Earth Sciences ; Elastic anisotropy ; Elastoplasticity ; Formations ; Fracture mechanics ; Geophysics/Geodesy ; Isotopes ; Original Paper ; Planes ; Porosity ; Stability ; Stability analysis ; Strength ; Well drilling ; Wells</subject><ispartof>Rock mechanics and rock engineering, 2016-09, Vol.49 (9), p.3671-3686</ispartof><rights>Springer-Verlag Wien 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a372t-c61d5c477e20ffc89836cf443776c970e4717e9fc1844087acaeea68a63ed133</citedby><cites>FETCH-LOGICAL-a372t-c61d5c477e20ffc89836cf443776c970e4717e9fc1844087acaeea68a63ed133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00603-016-1019-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00603-016-1019-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Jin, Yan</creatorcontrib><creatorcontrib>Lu, Yunhu</creatorcontrib><creatorcontrib>Chen, Mian</creatorcontrib><creatorcontrib>Hou, Bing</creatorcontrib><creatorcontrib>Chen, Wenyi</creatorcontrib><creatorcontrib>Wen, Xin</creatorcontrib><creatorcontrib>Yu, Xiaoning</creatorcontrib><title>A Wellbore Stability Model for a Deviated Well in a Transversely Isotropic Formation Considering Poroelastic Effects</title><title>Rock mechanics and rock engineering</title><addtitle>Rock Mech Rock Eng</addtitle><description>To analyse wellbore stability phenomena when drilling through a transversely isotropic formation such as shale, a wellbore stability model is developed based on the coordinate transformation method and complex variable elasticity theory. In order to comprehensively consider the anisotropies in the transversely isotropic formation, the model includes the followings: 1. the elastic anisotropy due to the sedimentation effect and naturally developed fractures and 2. the strength anisotropy due to the poor cementation between bedding planes and natural fractures. The model is further generalized by accounting for an arbitrary wellbore trajectory under an arbitrary in situ stress orientation. Next, the model is used in a parametric study that includes factors such as elastic anisotropy, strength anisotropy, multiple weak planes, in situ stress anisotropy, and poroelastic anisotropy, all of which can have a great influence on wellbore stability. Finally, a correction for a frequently used failure criterion has been made to ensure that the newly developed model is comprehensive and accurate for wellbore stability analyses in highly heterogeneous formations.</description><subject>Anisotropy</subject><subject>Civil Engineering</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Elastic anisotropy</subject><subject>Elastoplasticity</subject><subject>Formations</subject><subject>Fracture mechanics</subject><subject>Geophysics/Geodesy</subject><subject>Isotopes</subject><subject>Original Paper</subject><subject>Planes</subject><subject>Porosity</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Strength</subject><subject>Well drilling</subject><subject>Wells</subject><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUFLAzEQhYMoWKs_wFvAi5fVZJMmu8dSWy0oChb0FtLsRFK2mzVJC_33ptaDCJ4GZr43zLyH0CUlN5QQeRsJEYQVhIqCEloX1REaUM54wUfs_RgNiCxZUQpWnqKzGFeE5KGsBiiN8Ru07dIHwK9JL13r0g4_-QZabH3AGt_B1ukEzTeHXZdbi6C7uIUQod3hefQp-N4ZPPNhrZPzHZ74LroGgus-8IsPHlodUyam1oJJ8RydWN1GuPipQ7SYTReTh-Lx-X4-GT8WmskyFUbQZmS4lFASa01VV0wYy_PhUphaEuCSSqitoRXnpJLaaAAtKi0YNJSxIbo-rO2D_9xATGrtoslf6A78JqosG8la8mzFEF39QVd-E7p8XKaoKGvBhMwUPVAm-BgDWNUHt9ZhpyhR-xjUIQaVY1D7GFSVNeVBE_u9HRB-bf5X9AVh9IrV</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Liu, Ming</creator><creator>Jin, Yan</creator><creator>Lu, Yunhu</creator><creator>Chen, Mian</creator><creator>Hou, Bing</creator><creator>Chen, Wenyi</creator><creator>Wen, Xin</creator><creator>Yu, Xiaoning</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160901</creationdate><title>A Wellbore Stability Model for a Deviated Well in a Transversely Isotropic Formation Considering Poroelastic Effects</title><author>Liu, Ming ; Jin, Yan ; Lu, Yunhu ; Chen, Mian ; Hou, Bing ; Chen, Wenyi ; Wen, Xin ; Yu, Xiaoning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a372t-c61d5c477e20ffc89836cf443776c970e4717e9fc1844087acaeea68a63ed133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anisotropy</topic><topic>Civil Engineering</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Elastic anisotropy</topic><topic>Elastoplasticity</topic><topic>Formations</topic><topic>Fracture mechanics</topic><topic>Geophysics/Geodesy</topic><topic>Isotopes</topic><topic>Original Paper</topic><topic>Planes</topic><topic>Porosity</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Strength</topic><topic>Well drilling</topic><topic>Wells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Jin, Yan</creatorcontrib><creatorcontrib>Lu, Yunhu</creatorcontrib><creatorcontrib>Chen, Mian</creatorcontrib><creatorcontrib>Hou, Bing</creatorcontrib><creatorcontrib>Chen, Wenyi</creatorcontrib><creatorcontrib>Wen, Xin</creatorcontrib><creatorcontrib>Yu, Xiaoning</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ming</au><au>Jin, Yan</au><au>Lu, Yunhu</au><au>Chen, Mian</au><au>Hou, Bing</au><au>Chen, Wenyi</au><au>Wen, Xin</au><au>Yu, Xiaoning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wellbore Stability Model for a Deviated Well in a Transversely Isotropic Formation Considering Poroelastic Effects</atitle><jtitle>Rock mechanics and rock engineering</jtitle><stitle>Rock Mech Rock Eng</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>49</volume><issue>9</issue><spage>3671</spage><epage>3686</epage><pages>3671-3686</pages><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>To analyse wellbore stability phenomena when drilling through a transversely isotropic formation such as shale, a wellbore stability model is developed based on the coordinate transformation method and complex variable elasticity theory. In order to comprehensively consider the anisotropies in the transversely isotropic formation, the model includes the followings: 1. the elastic anisotropy due to the sedimentation effect and naturally developed fractures and 2. the strength anisotropy due to the poor cementation between bedding planes and natural fractures. The model is further generalized by accounting for an arbitrary wellbore trajectory under an arbitrary in situ stress orientation. Next, the model is used in a parametric study that includes factors such as elastic anisotropy, strength anisotropy, multiple weak planes, in situ stress anisotropy, and poroelastic anisotropy, all of which can have a great influence on wellbore stability. Finally, a correction for a frequently used failure criterion has been made to ensure that the newly developed model is comprehensive and accurate for wellbore stability analyses in highly heterogeneous formations.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00603-016-1019-8</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0723-2632
ispartof Rock mechanics and rock engineering, 2016-09, Vol.49 (9), p.3671-3686
issn 0723-2632
1434-453X
language eng
recordid cdi_proquest_miscellaneous_1845797414
source Springer Nature - Complete Springer Journals
subjects Anisotropy
Civil Engineering
Earth and Environmental Science
Earth Sciences
Elastic anisotropy
Elastoplasticity
Formations
Fracture mechanics
Geophysics/Geodesy
Isotopes
Original Paper
Planes
Porosity
Stability
Stability analysis
Strength
Well drilling
Wells
title A Wellbore Stability Model for a Deviated Well in a Transversely Isotropic Formation Considering Poroelastic Effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wellbore%20Stability%20Model%20for%20a%20Deviated%20Well%20in%20a%20Transversely%20Isotropic%20Formation%20Considering%20Poroelastic%20Effects&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=Liu,%20Ming&rft.date=2016-09-01&rft.volume=49&rft.issue=9&rft.spage=3671&rft.epage=3686&rft.pages=3671-3686&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-016-1019-8&rft_dat=%3Cproquest_cross%3E4169026751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816296367&rft_id=info:pmid/&rfr_iscdi=true