Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit
We propose a hydrodynamic model for a spheroidal microswimmer with two tangential surface velocity modes. This model is analytically solvable and reduces to Lighthill's and Blake's spherical squirmer model in the limit of equal major and minor semi-axes. Furthermore, we present an implemen...
Gespeichert in:
Veröffentlicht in: | Soft matter 2016-09, Vol.12 (35), p.7372-7385 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7385 |
---|---|
container_issue | 35 |
container_start_page | 7372 |
container_title | Soft matter |
container_volume | 12 |
creator | Theers, Mario Westphal, Elmar Gompper, Gerhard Winkler, Roland G |
description | We propose a hydrodynamic model for a spheroidal microswimmer with two tangential surface velocity modes. This model is analytically solvable and reduces to Lighthill's and Blake's spherical squirmer model in the limit of equal major and minor semi-axes. Furthermore, we present an implementation of such a spheroidal squirmer by means of particle-based mesoscale hydrodynamics simulations using the multiparticle collision dynamics approach. We investigate its properties as well as the scattering of two spheroidal squirmers in a slit geometry. Thereby we find a stable fixed point, where two pullers swim cooperatively forming a wedge-like conformation with a small constant angle.
Squirmers are model microswimmers with a prescribed velocity pattern on their surface. We extend the classical squirmer model to spheroidal shapes. A numerical study of scattering of two spheroidal squirmers in a slit geometry reveals that two pullers swim cooperatively in a wedge-like conformation. |
doi_str_mv | 10.1039/c6sm01424k |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845795390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845795390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-f252f02c196e75a08c2fec4ace7aacb1995671b3cc0f251b51fe833eb9f3a7cc3</originalsourceid><addsrcrecordid>eNqN0TtPwzAQB3ALgWgpLOygjAgp4PdjRBUv0YoBkNgix3HAkMTBTqn49qQPytrprPPvbrg_AMcIXiBI1KXhsYaIYvq5A4ZIUJpySeXu5k1eB-Agxg8IiaSI74MBFgwrIfgQTKa-sJVr3hKdxPbdBu8KXSW1M8HHuatrGxLdFInxvrVBd-7bJsv-YsQ1_VSjQ_DzJFauOwR7pa6iPVrXEXi5uX4e36WTx9v78dUkNQzJLi0xwyXEBiluBdNQGlxaQ7WxQmuTI6UYFygnxsCeopyh0kpCbK5KooUxZATOVnvb4L9mNnZZ7aKxVaUb62cxQ5IyoRhRcAuKhZSCbUUR54Qzqnp6vqKLK8Vgy6wNrtbhJ0MwW2SSjfnTdJnJQ49P13tneW2LDf0LoQcnKxCi2fz-h0p-AWrkkTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816636549</pqid></control><display><type>article</type><title>Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Theers, Mario ; Westphal, Elmar ; Gompper, Gerhard ; Winkler, Roland G</creator><creatorcontrib>Theers, Mario ; Westphal, Elmar ; Gompper, Gerhard ; Winkler, Roland G</creatorcontrib><description>We propose a hydrodynamic model for a spheroidal microswimmer with two tangential surface velocity modes. This model is analytically solvable and reduces to Lighthill's and Blake's spherical squirmer model in the limit of equal major and minor semi-axes. Furthermore, we present an implementation of such a spheroidal squirmer by means of particle-based mesoscale hydrodynamics simulations using the multiparticle collision dynamics approach. We investigate its properties as well as the scattering of two spheroidal squirmers in a slit geometry. Thereby we find a stable fixed point, where two pullers swim cooperatively forming a wedge-like conformation with a small constant angle.
Squirmers are model microswimmers with a prescribed velocity pattern on their surface. We extend the classical squirmer model to spheroidal shapes. A numerical study of scattering of two spheroidal squirmers in a slit geometry reveals that two pullers swim cooperatively in a wedge-like conformation.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c6sm01424k</identifier><identifier>PMID: 27529776</identifier><language>eng</language><publisher>England</publisher><subject>Computational fluid dynamics ; Computer simulation ; Constants ; Fluid flow ; Hydrodynamics ; Mathematical analysis ; Mesoscale phenomena ; Slits</subject><ispartof>Soft matter, 2016-09, Vol.12 (35), p.7372-7385</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-f252f02c196e75a08c2fec4ace7aacb1995671b3cc0f251b51fe833eb9f3a7cc3</citedby><cites>FETCH-LOGICAL-c518t-f252f02c196e75a08c2fec4ace7aacb1995671b3cc0f251b51fe833eb9f3a7cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27529776$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Theers, Mario</creatorcontrib><creatorcontrib>Westphal, Elmar</creatorcontrib><creatorcontrib>Gompper, Gerhard</creatorcontrib><creatorcontrib>Winkler, Roland G</creatorcontrib><title>Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>We propose a hydrodynamic model for a spheroidal microswimmer with two tangential surface velocity modes. This model is analytically solvable and reduces to Lighthill's and Blake's spherical squirmer model in the limit of equal major and minor semi-axes. Furthermore, we present an implementation of such a spheroidal squirmer by means of particle-based mesoscale hydrodynamics simulations using the multiparticle collision dynamics approach. We investigate its properties as well as the scattering of two spheroidal squirmers in a slit geometry. Thereby we find a stable fixed point, where two pullers swim cooperatively forming a wedge-like conformation with a small constant angle.
Squirmers are model microswimmers with a prescribed velocity pattern on their surface. We extend the classical squirmer model to spheroidal shapes. A numerical study of scattering of two spheroidal squirmers in a slit geometry reveals that two pullers swim cooperatively in a wedge-like conformation.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Constants</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Mathematical analysis</subject><subject>Mesoscale phenomena</subject><subject>Slits</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0TtPwzAQB3ALgWgpLOygjAgp4PdjRBUv0YoBkNgix3HAkMTBTqn49qQPytrprPPvbrg_AMcIXiBI1KXhsYaIYvq5A4ZIUJpySeXu5k1eB-Agxg8IiaSI74MBFgwrIfgQTKa-sJVr3hKdxPbdBu8KXSW1M8HHuatrGxLdFInxvrVBd-7bJsv-YsQ1_VSjQ_DzJFauOwR7pa6iPVrXEXi5uX4e36WTx9v78dUkNQzJLi0xwyXEBiluBdNQGlxaQ7WxQmuTI6UYFygnxsCeopyh0kpCbK5KooUxZATOVnvb4L9mNnZZ7aKxVaUb62cxQ5IyoRhRcAuKhZSCbUUR54Qzqnp6vqKLK8Vgy6wNrtbhJ0MwW2SSjfnTdJnJQ49P13tneW2LDf0LoQcnKxCi2fz-h0p-AWrkkTQ</recordid><startdate>20160921</startdate><enddate>20160921</enddate><creator>Theers, Mario</creator><creator>Westphal, Elmar</creator><creator>Gompper, Gerhard</creator><creator>Winkler, Roland G</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20160921</creationdate><title>Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit</title><author>Theers, Mario ; Westphal, Elmar ; Gompper, Gerhard ; Winkler, Roland G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-f252f02c196e75a08c2fec4ace7aacb1995671b3cc0f251b51fe833eb9f3a7cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Constants</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Mathematical analysis</topic><topic>Mesoscale phenomena</topic><topic>Slits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theers, Mario</creatorcontrib><creatorcontrib>Westphal, Elmar</creatorcontrib><creatorcontrib>Gompper, Gerhard</creatorcontrib><creatorcontrib>Winkler, Roland G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theers, Mario</au><au>Westphal, Elmar</au><au>Gompper, Gerhard</au><au>Winkler, Roland G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2016-09-21</date><risdate>2016</risdate><volume>12</volume><issue>35</issue><spage>7372</spage><epage>7385</epage><pages>7372-7385</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>We propose a hydrodynamic model for a spheroidal microswimmer with two tangential surface velocity modes. This model is analytically solvable and reduces to Lighthill's and Blake's spherical squirmer model in the limit of equal major and minor semi-axes. Furthermore, we present an implementation of such a spheroidal squirmer by means of particle-based mesoscale hydrodynamics simulations using the multiparticle collision dynamics approach. We investigate its properties as well as the scattering of two spheroidal squirmers in a slit geometry. Thereby we find a stable fixed point, where two pullers swim cooperatively forming a wedge-like conformation with a small constant angle.
Squirmers are model microswimmers with a prescribed velocity pattern on their surface. We extend the classical squirmer model to spheroidal shapes. A numerical study of scattering of two spheroidal squirmers in a slit geometry reveals that two pullers swim cooperatively in a wedge-like conformation.</abstract><cop>England</cop><pmid>27529776</pmid><doi>10.1039/c6sm01424k</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2016-09, Vol.12 (35), p.7372-7385 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845795390 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Computational fluid dynamics Computer simulation Constants Fluid flow Hydrodynamics Mathematical analysis Mesoscale phenomena Slits |
title | Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20a%20spheroidal%20microswimmer%20and%20cooperative%20swimming%20in%20a%20narrow%20slit&rft.jtitle=Soft%20matter&rft.au=Theers,%20Mario&rft.date=2016-09-21&rft.volume=12&rft.issue=35&rft.spage=7372&rft.epage=7385&rft.pages=7372-7385&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c6sm01424k&rft_dat=%3Cproquest_pubme%3E1845795390%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816636549&rft_id=info:pmid/27529776&rfr_iscdi=true |