Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit

We propose a hydrodynamic model for a spheroidal microswimmer with two tangential surface velocity modes. This model is analytically solvable and reduces to Lighthill's and Blake's spherical squirmer model in the limit of equal major and minor semi-axes. Furthermore, we present an implemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2016-09, Vol.12 (35), p.7372-7385
Hauptverfasser: Theers, Mario, Westphal, Elmar, Gompper, Gerhard, Winkler, Roland G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7385
container_issue 35
container_start_page 7372
container_title Soft matter
container_volume 12
creator Theers, Mario
Westphal, Elmar
Gompper, Gerhard
Winkler, Roland G
description We propose a hydrodynamic model for a spheroidal microswimmer with two tangential surface velocity modes. This model is analytically solvable and reduces to Lighthill's and Blake's spherical squirmer model in the limit of equal major and minor semi-axes. Furthermore, we present an implementation of such a spheroidal squirmer by means of particle-based mesoscale hydrodynamics simulations using the multiparticle collision dynamics approach. We investigate its properties as well as the scattering of two spheroidal squirmers in a slit geometry. Thereby we find a stable fixed point, where two pullers swim cooperatively forming a wedge-like conformation with a small constant angle. Squirmers are model microswimmers with a prescribed velocity pattern on their surface. We extend the classical squirmer model to spheroidal shapes. A numerical study of scattering of two spheroidal squirmers in a slit geometry reveals that two pullers swim cooperatively in a wedge-like conformation.
doi_str_mv 10.1039/c6sm01424k
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845795390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845795390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-f252f02c196e75a08c2fec4ace7aacb1995671b3cc0f251b51fe833eb9f3a7cc3</originalsourceid><addsrcrecordid>eNqN0TtPwzAQB3ALgWgpLOygjAgp4PdjRBUv0YoBkNgix3HAkMTBTqn49qQPytrprPPvbrg_AMcIXiBI1KXhsYaIYvq5A4ZIUJpySeXu5k1eB-Agxg8IiaSI74MBFgwrIfgQTKa-sJVr3hKdxPbdBu8KXSW1M8HHuatrGxLdFInxvrVBd-7bJsv-YsQ1_VSjQ_DzJFauOwR7pa6iPVrXEXi5uX4e36WTx9v78dUkNQzJLi0xwyXEBiluBdNQGlxaQ7WxQmuTI6UYFygnxsCeopyh0kpCbK5KooUxZATOVnvb4L9mNnZZ7aKxVaUb62cxQ5IyoRhRcAuKhZSCbUUR54Qzqnp6vqKLK8Vgy6wNrtbhJ0MwW2SSjfnTdJnJQ49P13tneW2LDf0LoQcnKxCi2fz-h0p-AWrkkTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816636549</pqid></control><display><type>article</type><title>Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Theers, Mario ; Westphal, Elmar ; Gompper, Gerhard ; Winkler, Roland G</creator><creatorcontrib>Theers, Mario ; Westphal, Elmar ; Gompper, Gerhard ; Winkler, Roland G</creatorcontrib><description>We propose a hydrodynamic model for a spheroidal microswimmer with two tangential surface velocity modes. This model is analytically solvable and reduces to Lighthill's and Blake's spherical squirmer model in the limit of equal major and minor semi-axes. Furthermore, we present an implementation of such a spheroidal squirmer by means of particle-based mesoscale hydrodynamics simulations using the multiparticle collision dynamics approach. We investigate its properties as well as the scattering of two spheroidal squirmers in a slit geometry. Thereby we find a stable fixed point, where two pullers swim cooperatively forming a wedge-like conformation with a small constant angle. Squirmers are model microswimmers with a prescribed velocity pattern on their surface. We extend the classical squirmer model to spheroidal shapes. A numerical study of scattering of two spheroidal squirmers in a slit geometry reveals that two pullers swim cooperatively in a wedge-like conformation.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c6sm01424k</identifier><identifier>PMID: 27529776</identifier><language>eng</language><publisher>England</publisher><subject>Computational fluid dynamics ; Computer simulation ; Constants ; Fluid flow ; Hydrodynamics ; Mathematical analysis ; Mesoscale phenomena ; Slits</subject><ispartof>Soft matter, 2016-09, Vol.12 (35), p.7372-7385</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-f252f02c196e75a08c2fec4ace7aacb1995671b3cc0f251b51fe833eb9f3a7cc3</citedby><cites>FETCH-LOGICAL-c518t-f252f02c196e75a08c2fec4ace7aacb1995671b3cc0f251b51fe833eb9f3a7cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27529776$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Theers, Mario</creatorcontrib><creatorcontrib>Westphal, Elmar</creatorcontrib><creatorcontrib>Gompper, Gerhard</creatorcontrib><creatorcontrib>Winkler, Roland G</creatorcontrib><title>Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>We propose a hydrodynamic model for a spheroidal microswimmer with two tangential surface velocity modes. This model is analytically solvable and reduces to Lighthill's and Blake's spherical squirmer model in the limit of equal major and minor semi-axes. Furthermore, we present an implementation of such a spheroidal squirmer by means of particle-based mesoscale hydrodynamics simulations using the multiparticle collision dynamics approach. We investigate its properties as well as the scattering of two spheroidal squirmers in a slit geometry. Thereby we find a stable fixed point, where two pullers swim cooperatively forming a wedge-like conformation with a small constant angle. Squirmers are model microswimmers with a prescribed velocity pattern on their surface. We extend the classical squirmer model to spheroidal shapes. A numerical study of scattering of two spheroidal squirmers in a slit geometry reveals that two pullers swim cooperatively in a wedge-like conformation.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Constants</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Mathematical analysis</subject><subject>Mesoscale phenomena</subject><subject>Slits</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0TtPwzAQB3ALgWgpLOygjAgp4PdjRBUv0YoBkNgix3HAkMTBTqn49qQPytrprPPvbrg_AMcIXiBI1KXhsYaIYvq5A4ZIUJpySeXu5k1eB-Agxg8IiaSI74MBFgwrIfgQTKa-sJVr3hKdxPbdBu8KXSW1M8HHuatrGxLdFInxvrVBd-7bJsv-YsQ1_VSjQ_DzJFauOwR7pa6iPVrXEXi5uX4e36WTx9v78dUkNQzJLi0xwyXEBiluBdNQGlxaQ7WxQmuTI6UYFygnxsCeopyh0kpCbK5KooUxZATOVnvb4L9mNnZZ7aKxVaUb62cxQ5IyoRhRcAuKhZSCbUUR54Qzqnp6vqKLK8Vgy6wNrtbhJ0MwW2SSjfnTdJnJQ49P13tneW2LDf0LoQcnKxCi2fz-h0p-AWrkkTQ</recordid><startdate>20160921</startdate><enddate>20160921</enddate><creator>Theers, Mario</creator><creator>Westphal, Elmar</creator><creator>Gompper, Gerhard</creator><creator>Winkler, Roland G</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20160921</creationdate><title>Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit</title><author>Theers, Mario ; Westphal, Elmar ; Gompper, Gerhard ; Winkler, Roland G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-f252f02c196e75a08c2fec4ace7aacb1995671b3cc0f251b51fe833eb9f3a7cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Constants</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Mathematical analysis</topic><topic>Mesoscale phenomena</topic><topic>Slits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theers, Mario</creatorcontrib><creatorcontrib>Westphal, Elmar</creatorcontrib><creatorcontrib>Gompper, Gerhard</creatorcontrib><creatorcontrib>Winkler, Roland G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theers, Mario</au><au>Westphal, Elmar</au><au>Gompper, Gerhard</au><au>Winkler, Roland G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2016-09-21</date><risdate>2016</risdate><volume>12</volume><issue>35</issue><spage>7372</spage><epage>7385</epage><pages>7372-7385</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>We propose a hydrodynamic model for a spheroidal microswimmer with two tangential surface velocity modes. This model is analytically solvable and reduces to Lighthill's and Blake's spherical squirmer model in the limit of equal major and minor semi-axes. Furthermore, we present an implementation of such a spheroidal squirmer by means of particle-based mesoscale hydrodynamics simulations using the multiparticle collision dynamics approach. We investigate its properties as well as the scattering of two spheroidal squirmers in a slit geometry. Thereby we find a stable fixed point, where two pullers swim cooperatively forming a wedge-like conformation with a small constant angle. Squirmers are model microswimmers with a prescribed velocity pattern on their surface. We extend the classical squirmer model to spheroidal shapes. A numerical study of scattering of two spheroidal squirmers in a slit geometry reveals that two pullers swim cooperatively in a wedge-like conformation.</abstract><cop>England</cop><pmid>27529776</pmid><doi>10.1039/c6sm01424k</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2016-09, Vol.12 (35), p.7372-7385
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_1845795390
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Computational fluid dynamics
Computer simulation
Constants
Fluid flow
Hydrodynamics
Mathematical analysis
Mesoscale phenomena
Slits
title Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20a%20spheroidal%20microswimmer%20and%20cooperative%20swimming%20in%20a%20narrow%20slit&rft.jtitle=Soft%20matter&rft.au=Theers,%20Mario&rft.date=2016-09-21&rft.volume=12&rft.issue=35&rft.spage=7372&rft.epage=7385&rft.pages=7372-7385&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c6sm01424k&rft_dat=%3Cproquest_pubme%3E1845795390%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816636549&rft_id=info:pmid/27529776&rfr_iscdi=true