Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production
Earth-abundant MoS2 is widely reported as a promising HER electrocatalyst in acidic solutions, but it exhibits extremely poor HER activities in alkaline media due to the slow water dissociation process. Here we present a combined theoretical and experimental approach to improve the sluggish HER kine...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2016-08, Vol.9 (9), p.2789-2793 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2793 |
---|---|
container_issue | 9 |
container_start_page | 2789 |
container_title | Energy & environmental science |
container_volume | 9 |
creator | Zhang, Jian Wang, Tao Liu, Pan Liu, Shaohua Dong, Renhao Zhuang, Xiaodong Chen, Mingwei Feng, Xinliang |
description | Earth-abundant MoS2 is widely reported as a promising HER electrocatalyst in acidic solutions, but it exhibits extremely poor HER activities in alkaline media due to the slow water dissociation process. Here we present a combined theoretical and experimental approach to improve the sluggish HER kinetics of MoS2 electrocatalysts through engineering the water dissociation sites by doping Ni atoms into MoS2 nanosheets. The Ni sites thus introduced can effectively reduce the kinetic energy barrier of the initial water-dissociation step and facilitate the desorption of the -OH that are formed. As a result, the developed Ni-doped MoS2 nanosheets (Ni-MoS2) show an extremely low HER overpotential of similar to 98 mV at 10 mA cm-2 in 1 M KOH aqueous solution, which is superior to those (>220 mV at 10 mA cm-2) of reported MoS2 electrocatalysts. |
doi_str_mv | 10.1039/c6ee01786j |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845794750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1827898596</sourcerecordid><originalsourceid>FETCH-LOGICAL-g294t-94f70a7aab04f9048a56c8d9fc71c94f2c420a3fec3222ffaa15b3bab94878ca3</originalsourceid><addsrcrecordid>eNqNTk1PwyAYJkYT5_TiL-DopQqUFjiaZTqTGQ_qeXlLXzqWCgosZv_eGvXu6XmS55OQS86uOavNjW0RGVe63R2RGVeNrBrF2uM_3hpxSs5y3jHWCqbMjIzLMPiAmHwY6CcUTLT3OUfrofgYaPYFM_WBPsZnQQOEmLeIJVMXEwVrccQ0pXo6EVtStFBgPBRv6fbQpzhgoO8p9nv73XZOThyMGS9-cU5e75Yvi1W1frp_WNyuq0EYWSojnWKgADomnWFSQ9Na3RtnFbeTKKwUDGqHthZCOAfAm67uoDNSK22hnpOrn95p-mOPuWzefJ6ujhAw7vOGa9koI1XD_mEVShvdmLb-Ag5QbOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1827898596</pqid></control><display><type>article</type><title>Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Zhang, Jian ; Wang, Tao ; Liu, Pan ; Liu, Shaohua ; Dong, Renhao ; Zhuang, Xiaodong ; Chen, Mingwei ; Feng, Xinliang</creator><creatorcontrib>Zhang, Jian ; Wang, Tao ; Liu, Pan ; Liu, Shaohua ; Dong, Renhao ; Zhuang, Xiaodong ; Chen, Mingwei ; Feng, Xinliang</creatorcontrib><description>Earth-abundant MoS2 is widely reported as a promising HER electrocatalyst in acidic solutions, but it exhibits extremely poor HER activities in alkaline media due to the slow water dissociation process. Here we present a combined theoretical and experimental approach to improve the sluggish HER kinetics of MoS2 electrocatalysts through engineering the water dissociation sites by doping Ni atoms into MoS2 nanosheets. The Ni sites thus introduced can effectively reduce the kinetic energy barrier of the initial water-dissociation step and facilitate the desorption of the -OH that are formed. As a result, the developed Ni-doped MoS2 nanosheets (Ni-MoS2) show an extremely low HER overpotential of similar to 98 mV at 10 mA cm-2 in 1 M KOH aqueous solution, which is superior to those (>220 mV at 10 mA cm-2) of reported MoS2 electrocatalysts.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c6ee01786j</identifier><language>eng</language><subject>Aqueous solutions ; Desorption ; Electrocatalysts ; Extreme values ; Hydrogen production ; Kinetic energy ; Molybdenum disulfide ; Nanostructure</subject><ispartof>Energy & environmental science, 2016-08, Vol.9 (9), p.2789-2793</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Liu, Pan</creatorcontrib><creatorcontrib>Liu, Shaohua</creatorcontrib><creatorcontrib>Dong, Renhao</creatorcontrib><creatorcontrib>Zhuang, Xiaodong</creatorcontrib><creatorcontrib>Chen, Mingwei</creatorcontrib><creatorcontrib>Feng, Xinliang</creatorcontrib><title>Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production</title><title>Energy & environmental science</title><description>Earth-abundant MoS2 is widely reported as a promising HER electrocatalyst in acidic solutions, but it exhibits extremely poor HER activities in alkaline media due to the slow water dissociation process. Here we present a combined theoretical and experimental approach to improve the sluggish HER kinetics of MoS2 electrocatalysts through engineering the water dissociation sites by doping Ni atoms into MoS2 nanosheets. The Ni sites thus introduced can effectively reduce the kinetic energy barrier of the initial water-dissociation step and facilitate the desorption of the -OH that are formed. As a result, the developed Ni-doped MoS2 nanosheets (Ni-MoS2) show an extremely low HER overpotential of similar to 98 mV at 10 mA cm-2 in 1 M KOH aqueous solution, which is superior to those (>220 mV at 10 mA cm-2) of reported MoS2 electrocatalysts.</description><subject>Aqueous solutions</subject><subject>Desorption</subject><subject>Electrocatalysts</subject><subject>Extreme values</subject><subject>Hydrogen production</subject><subject>Kinetic energy</subject><subject>Molybdenum disulfide</subject><subject>Nanostructure</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNTk1PwyAYJkYT5_TiL-DopQqUFjiaZTqTGQ_qeXlLXzqWCgosZv_eGvXu6XmS55OQS86uOavNjW0RGVe63R2RGVeNrBrF2uM_3hpxSs5y3jHWCqbMjIzLMPiAmHwY6CcUTLT3OUfrofgYaPYFM_WBPsZnQQOEmLeIJVMXEwVrccQ0pXo6EVtStFBgPBRv6fbQpzhgoO8p9nv73XZOThyMGS9-cU5e75Yvi1W1frp_WNyuq0EYWSojnWKgADomnWFSQ9Na3RtnFbeTKKwUDGqHthZCOAfAm67uoDNSK22hnpOrn95p-mOPuWzefJ6ujhAw7vOGa9koI1XD_mEVShvdmLb-Ag5QbOU</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Zhang, Jian</creator><creator>Wang, Tao</creator><creator>Liu, Pan</creator><creator>Liu, Shaohua</creator><creator>Dong, Renhao</creator><creator>Zhuang, Xiaodong</creator><creator>Chen, Mingwei</creator><creator>Feng, Xinliang</creator><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20160801</creationdate><title>Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production</title><author>Zhang, Jian ; Wang, Tao ; Liu, Pan ; Liu, Shaohua ; Dong, Renhao ; Zhuang, Xiaodong ; Chen, Mingwei ; Feng, Xinliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g294t-94f70a7aab04f9048a56c8d9fc71c94f2c420a3fec3222ffaa15b3bab94878ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aqueous solutions</topic><topic>Desorption</topic><topic>Electrocatalysts</topic><topic>Extreme values</topic><topic>Hydrogen production</topic><topic>Kinetic energy</topic><topic>Molybdenum disulfide</topic><topic>Nanostructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Liu, Pan</creatorcontrib><creatorcontrib>Liu, Shaohua</creatorcontrib><creatorcontrib>Dong, Renhao</creatorcontrib><creatorcontrib>Zhuang, Xiaodong</creatorcontrib><creatorcontrib>Chen, Mingwei</creatorcontrib><creatorcontrib>Feng, Xinliang</creatorcontrib><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jian</au><au>Wang, Tao</au><au>Liu, Pan</au><au>Liu, Shaohua</au><au>Dong, Renhao</au><au>Zhuang, Xiaodong</au><au>Chen, Mingwei</au><au>Feng, Xinliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production</atitle><jtitle>Energy & environmental science</jtitle><date>2016-08-01</date><risdate>2016</risdate><volume>9</volume><issue>9</issue><spage>2789</spage><epage>2793</epage><pages>2789-2793</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Earth-abundant MoS2 is widely reported as a promising HER electrocatalyst in acidic solutions, but it exhibits extremely poor HER activities in alkaline media due to the slow water dissociation process. Here we present a combined theoretical and experimental approach to improve the sluggish HER kinetics of MoS2 electrocatalysts through engineering the water dissociation sites by doping Ni atoms into MoS2 nanosheets. The Ni sites thus introduced can effectively reduce the kinetic energy barrier of the initial water-dissociation step and facilitate the desorption of the -OH that are formed. As a result, the developed Ni-doped MoS2 nanosheets (Ni-MoS2) show an extremely low HER overpotential of similar to 98 mV at 10 mA cm-2 in 1 M KOH aqueous solution, which is superior to those (>220 mV at 10 mA cm-2) of reported MoS2 electrocatalysts.</abstract><doi>10.1039/c6ee01786j</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2016-08, Vol.9 (9), p.2789-2793 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845794750 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Aqueous solutions Desorption Electrocatalysts Extreme values Hydrogen production Kinetic energy Molybdenum disulfide Nanostructure |
title | Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20water%20dissociation%20sites%20in%20MoS2%20nanosheets%20for%20accelerated%20electrocatalytic%20hydrogen%20production&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Zhang,%20Jian&rft.date=2016-08-01&rft.volume=9&rft.issue=9&rft.spage=2789&rft.epage=2793&rft.pages=2789-2793&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c6ee01786j&rft_dat=%3Cproquest%3E1827898596%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1827898596&rft_id=info:pmid/&rfr_iscdi=true |