Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production

Earth-abundant MoS2 is widely reported as a promising HER electrocatalyst in acidic solutions, but it exhibits extremely poor HER activities in alkaline media due to the slow water dissociation process. Here we present a combined theoretical and experimental approach to improve the sluggish HER kine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2016-08, Vol.9 (9), p.2789-2793
Hauptverfasser: Zhang, Jian, Wang, Tao, Liu, Pan, Liu, Shaohua, Dong, Renhao, Zhuang, Xiaodong, Chen, Mingwei, Feng, Xinliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2793
container_issue 9
container_start_page 2789
container_title Energy & environmental science
container_volume 9
creator Zhang, Jian
Wang, Tao
Liu, Pan
Liu, Shaohua
Dong, Renhao
Zhuang, Xiaodong
Chen, Mingwei
Feng, Xinliang
description Earth-abundant MoS2 is widely reported as a promising HER electrocatalyst in acidic solutions, but it exhibits extremely poor HER activities in alkaline media due to the slow water dissociation process. Here we present a combined theoretical and experimental approach to improve the sluggish HER kinetics of MoS2 electrocatalysts through engineering the water dissociation sites by doping Ni atoms into MoS2 nanosheets. The Ni sites thus introduced can effectively reduce the kinetic energy barrier of the initial water-dissociation step and facilitate the desorption of the -OH that are formed. As a result, the developed Ni-doped MoS2 nanosheets (Ni-MoS2) show an extremely low HER overpotential of similar to 98 mV at 10 mA cm-2 in 1 M KOH aqueous solution, which is superior to those (>220 mV at 10 mA cm-2) of reported MoS2 electrocatalysts.
doi_str_mv 10.1039/c6ee01786j
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845794750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1827898596</sourcerecordid><originalsourceid>FETCH-LOGICAL-g294t-94f70a7aab04f9048a56c8d9fc71c94f2c420a3fec3222ffaa15b3bab94878ca3</originalsourceid><addsrcrecordid>eNqNTk1PwyAYJkYT5_TiL-DopQqUFjiaZTqTGQ_qeXlLXzqWCgosZv_eGvXu6XmS55OQS86uOavNjW0RGVe63R2RGVeNrBrF2uM_3hpxSs5y3jHWCqbMjIzLMPiAmHwY6CcUTLT3OUfrofgYaPYFM_WBPsZnQQOEmLeIJVMXEwVrccQ0pXo6EVtStFBgPBRv6fbQpzhgoO8p9nv73XZOThyMGS9-cU5e75Yvi1W1frp_WNyuq0EYWSojnWKgADomnWFSQ9Na3RtnFbeTKKwUDGqHthZCOAfAm67uoDNSK22hnpOrn95p-mOPuWzefJ6ujhAw7vOGa9koI1XD_mEVShvdmLb-Ag5QbOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1827898596</pqid></control><display><type>article</type><title>Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Zhang, Jian ; Wang, Tao ; Liu, Pan ; Liu, Shaohua ; Dong, Renhao ; Zhuang, Xiaodong ; Chen, Mingwei ; Feng, Xinliang</creator><creatorcontrib>Zhang, Jian ; Wang, Tao ; Liu, Pan ; Liu, Shaohua ; Dong, Renhao ; Zhuang, Xiaodong ; Chen, Mingwei ; Feng, Xinliang</creatorcontrib><description>Earth-abundant MoS2 is widely reported as a promising HER electrocatalyst in acidic solutions, but it exhibits extremely poor HER activities in alkaline media due to the slow water dissociation process. Here we present a combined theoretical and experimental approach to improve the sluggish HER kinetics of MoS2 electrocatalysts through engineering the water dissociation sites by doping Ni atoms into MoS2 nanosheets. The Ni sites thus introduced can effectively reduce the kinetic energy barrier of the initial water-dissociation step and facilitate the desorption of the -OH that are formed. As a result, the developed Ni-doped MoS2 nanosheets (Ni-MoS2) show an extremely low HER overpotential of similar to 98 mV at 10 mA cm-2 in 1 M KOH aqueous solution, which is superior to those (&gt;220 mV at 10 mA cm-2) of reported MoS2 electrocatalysts.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c6ee01786j</identifier><language>eng</language><subject>Aqueous solutions ; Desorption ; Electrocatalysts ; Extreme values ; Hydrogen production ; Kinetic energy ; Molybdenum disulfide ; Nanostructure</subject><ispartof>Energy &amp; environmental science, 2016-08, Vol.9 (9), p.2789-2793</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Liu, Pan</creatorcontrib><creatorcontrib>Liu, Shaohua</creatorcontrib><creatorcontrib>Dong, Renhao</creatorcontrib><creatorcontrib>Zhuang, Xiaodong</creatorcontrib><creatorcontrib>Chen, Mingwei</creatorcontrib><creatorcontrib>Feng, Xinliang</creatorcontrib><title>Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production</title><title>Energy &amp; environmental science</title><description>Earth-abundant MoS2 is widely reported as a promising HER electrocatalyst in acidic solutions, but it exhibits extremely poor HER activities in alkaline media due to the slow water dissociation process. Here we present a combined theoretical and experimental approach to improve the sluggish HER kinetics of MoS2 electrocatalysts through engineering the water dissociation sites by doping Ni atoms into MoS2 nanosheets. The Ni sites thus introduced can effectively reduce the kinetic energy barrier of the initial water-dissociation step and facilitate the desorption of the -OH that are formed. As a result, the developed Ni-doped MoS2 nanosheets (Ni-MoS2) show an extremely low HER overpotential of similar to 98 mV at 10 mA cm-2 in 1 M KOH aqueous solution, which is superior to those (&gt;220 mV at 10 mA cm-2) of reported MoS2 electrocatalysts.</description><subject>Aqueous solutions</subject><subject>Desorption</subject><subject>Electrocatalysts</subject><subject>Extreme values</subject><subject>Hydrogen production</subject><subject>Kinetic energy</subject><subject>Molybdenum disulfide</subject><subject>Nanostructure</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNTk1PwyAYJkYT5_TiL-DopQqUFjiaZTqTGQ_qeXlLXzqWCgosZv_eGvXu6XmS55OQS86uOavNjW0RGVe63R2RGVeNrBrF2uM_3hpxSs5y3jHWCqbMjIzLMPiAmHwY6CcUTLT3OUfrofgYaPYFM_WBPsZnQQOEmLeIJVMXEwVrccQ0pXo6EVtStFBgPBRv6fbQpzhgoO8p9nv73XZOThyMGS9-cU5e75Yvi1W1frp_WNyuq0EYWSojnWKgADomnWFSQ9Na3RtnFbeTKKwUDGqHthZCOAfAm67uoDNSK22hnpOrn95p-mOPuWzefJ6ujhAw7vOGa9koI1XD_mEVShvdmLb-Ag5QbOU</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Zhang, Jian</creator><creator>Wang, Tao</creator><creator>Liu, Pan</creator><creator>Liu, Shaohua</creator><creator>Dong, Renhao</creator><creator>Zhuang, Xiaodong</creator><creator>Chen, Mingwei</creator><creator>Feng, Xinliang</creator><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20160801</creationdate><title>Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production</title><author>Zhang, Jian ; Wang, Tao ; Liu, Pan ; Liu, Shaohua ; Dong, Renhao ; Zhuang, Xiaodong ; Chen, Mingwei ; Feng, Xinliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g294t-94f70a7aab04f9048a56c8d9fc71c94f2c420a3fec3222ffaa15b3bab94878ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aqueous solutions</topic><topic>Desorption</topic><topic>Electrocatalysts</topic><topic>Extreme values</topic><topic>Hydrogen production</topic><topic>Kinetic energy</topic><topic>Molybdenum disulfide</topic><topic>Nanostructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Liu, Pan</creatorcontrib><creatorcontrib>Liu, Shaohua</creatorcontrib><creatorcontrib>Dong, Renhao</creatorcontrib><creatorcontrib>Zhuang, Xiaodong</creatorcontrib><creatorcontrib>Chen, Mingwei</creatorcontrib><creatorcontrib>Feng, Xinliang</creatorcontrib><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jian</au><au>Wang, Tao</au><au>Liu, Pan</au><au>Liu, Shaohua</au><au>Dong, Renhao</au><au>Zhuang, Xiaodong</au><au>Chen, Mingwei</au><au>Feng, Xinliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2016-08-01</date><risdate>2016</risdate><volume>9</volume><issue>9</issue><spage>2789</spage><epage>2793</epage><pages>2789-2793</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Earth-abundant MoS2 is widely reported as a promising HER electrocatalyst in acidic solutions, but it exhibits extremely poor HER activities in alkaline media due to the slow water dissociation process. Here we present a combined theoretical and experimental approach to improve the sluggish HER kinetics of MoS2 electrocatalysts through engineering the water dissociation sites by doping Ni atoms into MoS2 nanosheets. The Ni sites thus introduced can effectively reduce the kinetic energy barrier of the initial water-dissociation step and facilitate the desorption of the -OH that are formed. As a result, the developed Ni-doped MoS2 nanosheets (Ni-MoS2) show an extremely low HER overpotential of similar to 98 mV at 10 mA cm-2 in 1 M KOH aqueous solution, which is superior to those (&gt;220 mV at 10 mA cm-2) of reported MoS2 electrocatalysts.</abstract><doi>10.1039/c6ee01786j</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2016-08, Vol.9 (9), p.2789-2793
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_miscellaneous_1845794750
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Aqueous solutions
Desorption
Electrocatalysts
Extreme values
Hydrogen production
Kinetic energy
Molybdenum disulfide
Nanostructure
title Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20water%20dissociation%20sites%20in%20MoS2%20nanosheets%20for%20accelerated%20electrocatalytic%20hydrogen%20production&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Zhang,%20Jian&rft.date=2016-08-01&rft.volume=9&rft.issue=9&rft.spage=2789&rft.epage=2793&rft.pages=2789-2793&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c6ee01786j&rft_dat=%3Cproquest%3E1827898596%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1827898596&rft_id=info:pmid/&rfr_iscdi=true