An Efficient Approach for Solving Optimization over Linear Arithmetic Constraints
Satisfiability Modulo Theories (SMT) have been widely investigated over the last decade. Recently researchers have extended SMT to the optimization problem over linear arithmetic constraints. To the best of our knowledge, SYMBA and OPT-MATHSAT are two most efficient solvers available for this proble...
Gespeichert in:
Veröffentlicht in: | Journal of computer science and technology 2016-09, Vol.31 (5), p.987-1011 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1011 |
---|---|
container_issue | 5 |
container_start_page | 987 |
container_title | Journal of computer science and technology |
container_volume | 31 |
creator | Chen, Li Wu, Jing-Zheng Lv, Yin-Run Wang, Yong-Ji |
description | Satisfiability Modulo Theories (SMT) have been widely investigated over the last decade. Recently researchers have extended SMT to the optimization problem over linear arithmetic constraints. To the best of our knowledge, SYMBA and OPT-MATHSAT are two most efficient solvers available for this problem. The key algorithms used by SVMBA and OPT-MATHSAT consist of the loop of two procedures: 1) critical finding for detecting a critical point, which is very likely to be globally optimal, and 2) global checking for confirming the critical point is reMly globally optimal. In this paper, we propose a new approach based on the Simplex method widely used in operation research. Our fundamental idea is to find several critical points by constructing and solving a series of linear problems with the Simplex method. Our approach replaces the Mgorithms of critical finding in SYMBA and OPT-MATHSAT, and reduces the runtime of critical finding and decreases the number of executions of global checking. The correctness of our approach is proved. The experiment evaluates our implementation against SYMBA and OPT-MATHSAT on a critical class of problems in real-time systems. Our approach outperforms SYMBA on 99.6% of benchmarks and is superior to OPT-MATHSAT in large-scale cases where the number of tasks is more than 24. The experimental results demonstrate that our approach has great potential and competitiveness for the optimization problem. |
doi_str_mv | 10.1007/s11390-016-1675-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845792978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>670073560</cqvip_id><sourcerecordid>4171234361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-125a9210b076358d28d7ad1a63292bc861bc89811637f0a317d0b01e7ec950dd3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsH78AG9BL15WZza7yeZYSv2AQhH1HOJutk1pkzZJS_XXG1kR8eBlZg7PMzO8WXaBcIMA_DYgUgE5IMuR8SrfH2QDrBnkJS_FYZoBIBepHGcnISwAKIeyHGRPQ0vGXWcao20kw_XaO9XMSec8eXbLnbEzMl1HszIfKhpnidtpTybGauXJ0Js4X-loGjJyNkSvjI3hLDvq1DLo8-9-mr3ejV9GD_lkev84Gk7yhnIWcywqJQqEN-CMVnVb1C1XLSpGC1G8NTXDVESNyCjvQFHkbWJRc92ICtqWnmbX_d708marQ5QrExq9XCqr3TZIrMuKi0LwOqFXf9CF23qbvksUshqqgopEYU813oXgdSfX3qyUf5cI8itk2YcsU8jyK2S5T07ROyGxdqb9r83_SJffh-bOzjbJ-7nEeFJoxYB-AuIaidE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816805239</pqid></control><display><type>article</type><title>An Efficient Approach for Solving Optimization over Linear Arithmetic Constraints</title><source>Springer Nature - Complete Springer Journals</source><creator>Chen, Li ; Wu, Jing-Zheng ; Lv, Yin-Run ; Wang, Yong-Ji</creator><creatorcontrib>Chen, Li ; Wu, Jing-Zheng ; Lv, Yin-Run ; Wang, Yong-Ji</creatorcontrib><description>Satisfiability Modulo Theories (SMT) have been widely investigated over the last decade. Recently researchers have extended SMT to the optimization problem over linear arithmetic constraints. To the best of our knowledge, SYMBA and OPT-MATHSAT are two most efficient solvers available for this problem. The key algorithms used by SVMBA and OPT-MATHSAT consist of the loop of two procedures: 1) critical finding for detecting a critical point, which is very likely to be globally optimal, and 2) global checking for confirming the critical point is reMly globally optimal. In this paper, we propose a new approach based on the Simplex method widely used in operation research. Our fundamental idea is to find several critical points by constructing and solving a series of linear problems with the Simplex method. Our approach replaces the Mgorithms of critical finding in SYMBA and OPT-MATHSAT, and reduces the runtime of critical finding and decreases the number of executions of global checking. The correctness of our approach is proved. The experiment evaluates our implementation against SYMBA and OPT-MATHSAT on a critical class of problems in real-time systems. Our approach outperforms SYMBA on 99.6% of benchmarks and is superior to OPT-MATHSAT in large-scale cases where the number of tasks is more than 24. The experimental results demonstrate that our approach has great potential and competitiveness for the optimization problem.</description><identifier>ISSN: 1000-9000</identifier><identifier>EISSN: 1860-4749</identifier><identifier>DOI: 10.1007/s11390-016-1675-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Analysis ; Arithmetic ; Artificial Intelligence ; Computer Science ; Critical point ; Data Structures and Information Theory ; Information Systems Applications (incl.Internet) ; Linear programming ; Operations research ; Optimization ; Optimization algorithms ; Optimization techniques ; Regular Paper ; Simplex method ; Software ; Software Engineering ; Solvers ; Studies ; Tasks ; Theory of Computation ; 全局最优 ; 关键算法 ; 单纯形法 ; 求解器 ; 算术 ; 约束优化问题 ; 线性问题 ; 运行时间</subject><ispartof>Journal of computer science and technology, 2016-09, Vol.31 (5), p.987-1011</ispartof><rights>Springer Science+Business Media, LLC & Science Press, China 2016</rights><rights>Springer Science+Business Media, LLC & Science Press, China 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-125a9210b076358d28d7ad1a63292bc861bc89811637f0a317d0b01e7ec950dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85226X/85226X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11390-016-1675-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11390-016-1675-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Wu, Jing-Zheng</creatorcontrib><creatorcontrib>Lv, Yin-Run</creatorcontrib><creatorcontrib>Wang, Yong-Ji</creatorcontrib><title>An Efficient Approach for Solving Optimization over Linear Arithmetic Constraints</title><title>Journal of computer science and technology</title><addtitle>J. Comput. Sci. Technol</addtitle><addtitle>Journal of Computer Science and Technology</addtitle><description>Satisfiability Modulo Theories (SMT) have been widely investigated over the last decade. Recently researchers have extended SMT to the optimization problem over linear arithmetic constraints. To the best of our knowledge, SYMBA and OPT-MATHSAT are two most efficient solvers available for this problem. The key algorithms used by SVMBA and OPT-MATHSAT consist of the loop of two procedures: 1) critical finding for detecting a critical point, which is very likely to be globally optimal, and 2) global checking for confirming the critical point is reMly globally optimal. In this paper, we propose a new approach based on the Simplex method widely used in operation research. Our fundamental idea is to find several critical points by constructing and solving a series of linear problems with the Simplex method. Our approach replaces the Mgorithms of critical finding in SYMBA and OPT-MATHSAT, and reduces the runtime of critical finding and decreases the number of executions of global checking. The correctness of our approach is proved. The experiment evaluates our implementation against SYMBA and OPT-MATHSAT on a critical class of problems in real-time systems. Our approach outperforms SYMBA on 99.6% of benchmarks and is superior to OPT-MATHSAT in large-scale cases where the number of tasks is more than 24. The experimental results demonstrate that our approach has great potential and competitiveness for the optimization problem.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Arithmetic</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Critical point</subject><subject>Data Structures and Information Theory</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Linear programming</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Regular Paper</subject><subject>Simplex method</subject><subject>Software</subject><subject>Software Engineering</subject><subject>Solvers</subject><subject>Studies</subject><subject>Tasks</subject><subject>Theory of Computation</subject><subject>全局最优</subject><subject>关键算法</subject><subject>单纯形法</subject><subject>求解器</subject><subject>算术</subject><subject>约束优化问题</subject><subject>线性问题</subject><subject>运行时间</subject><issn>1000-9000</issn><issn>1860-4749</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhhdRsH78AG9BL15WZza7yeZYSv2AQhH1HOJutk1pkzZJS_XXG1kR8eBlZg7PMzO8WXaBcIMA_DYgUgE5IMuR8SrfH2QDrBnkJS_FYZoBIBepHGcnISwAKIeyHGRPQ0vGXWcao20kw_XaO9XMSec8eXbLnbEzMl1HszIfKhpnidtpTybGauXJ0Js4X-loGjJyNkSvjI3hLDvq1DLo8-9-mr3ejV9GD_lkev84Gk7yhnIWcywqJQqEN-CMVnVb1C1XLSpGC1G8NTXDVESNyCjvQFHkbWJRc92ICtqWnmbX_d708marQ5QrExq9XCqr3TZIrMuKi0LwOqFXf9CF23qbvksUshqqgopEYU813oXgdSfX3qyUf5cI8itk2YcsU8jyK2S5T07ROyGxdqb9r83_SJffh-bOzjbJ-7nEeFJoxYB-AuIaidE</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Chen, Li</creator><creator>Wu, Jing-Zheng</creator><creator>Lv, Yin-Run</creator><creator>Wang, Yong-Ji</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160901</creationdate><title>An Efficient Approach for Solving Optimization over Linear Arithmetic Constraints</title><author>Chen, Li ; Wu, Jing-Zheng ; Lv, Yin-Run ; Wang, Yong-Ji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-125a9210b076358d28d7ad1a63292bc861bc89811637f0a317d0b01e7ec950dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Arithmetic</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Critical point</topic><topic>Data Structures and Information Theory</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Linear programming</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Regular Paper</topic><topic>Simplex method</topic><topic>Software</topic><topic>Software Engineering</topic><topic>Solvers</topic><topic>Studies</topic><topic>Tasks</topic><topic>Theory of Computation</topic><topic>全局最优</topic><topic>关键算法</topic><topic>单纯形法</topic><topic>求解器</topic><topic>算术</topic><topic>约束优化问题</topic><topic>线性问题</topic><topic>运行时间</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Wu, Jing-Zheng</creatorcontrib><creatorcontrib>Lv, Yin-Run</creatorcontrib><creatorcontrib>Wang, Yong-Ji</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of computer science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Li</au><au>Wu, Jing-Zheng</au><au>Lv, Yin-Run</au><au>Wang, Yong-Ji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Approach for Solving Optimization over Linear Arithmetic Constraints</atitle><jtitle>Journal of computer science and technology</jtitle><stitle>J. Comput. Sci. Technol</stitle><addtitle>Journal of Computer Science and Technology</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>31</volume><issue>5</issue><spage>987</spage><epage>1011</epage><pages>987-1011</pages><issn>1000-9000</issn><eissn>1860-4749</eissn><abstract>Satisfiability Modulo Theories (SMT) have been widely investigated over the last decade. Recently researchers have extended SMT to the optimization problem over linear arithmetic constraints. To the best of our knowledge, SYMBA and OPT-MATHSAT are two most efficient solvers available for this problem. The key algorithms used by SVMBA and OPT-MATHSAT consist of the loop of two procedures: 1) critical finding for detecting a critical point, which is very likely to be globally optimal, and 2) global checking for confirming the critical point is reMly globally optimal. In this paper, we propose a new approach based on the Simplex method widely used in operation research. Our fundamental idea is to find several critical points by constructing and solving a series of linear problems with the Simplex method. Our approach replaces the Mgorithms of critical finding in SYMBA and OPT-MATHSAT, and reduces the runtime of critical finding and decreases the number of executions of global checking. The correctness of our approach is proved. The experiment evaluates our implementation against SYMBA and OPT-MATHSAT on a critical class of problems in real-time systems. Our approach outperforms SYMBA on 99.6% of benchmarks and is superior to OPT-MATHSAT in large-scale cases where the number of tasks is more than 24. The experimental results demonstrate that our approach has great potential and competitiveness for the optimization problem.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11390-016-1675-x</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1000-9000 |
ispartof | Journal of computer science and technology, 2016-09, Vol.31 (5), p.987-1011 |
issn | 1000-9000 1860-4749 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845792978 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Analysis Arithmetic Artificial Intelligence Computer Science Critical point Data Structures and Information Theory Information Systems Applications (incl.Internet) Linear programming Operations research Optimization Optimization algorithms Optimization techniques Regular Paper Simplex method Software Software Engineering Solvers Studies Tasks Theory of Computation 全局最优 关键算法 单纯形法 求解器 算术 约束优化问题 线性问题 运行时间 |
title | An Efficient Approach for Solving Optimization over Linear Arithmetic Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Approach%20for%20Solving%20Optimization%20over%20Linear%20Arithmetic%20Constraints&rft.jtitle=Journal%20of%20computer%20science%20and%20technology&rft.au=Chen,%20Li&rft.date=2016-09-01&rft.volume=31&rft.issue=5&rft.spage=987&rft.epage=1011&rft.pages=987-1011&rft.issn=1000-9000&rft.eissn=1860-4749&rft_id=info:doi/10.1007/s11390-016-1675-x&rft_dat=%3Cproquest_cross%3E4171234361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816805239&rft_id=info:pmid/&rft_cqvip_id=670073560&rfr_iscdi=true |