Validation of the Hardening Behaviors for Metallic Materials at High Strain Rate and Temperature by Using the Taylor Impact Test
This paper is concerned with the validation of the dynamic hardening behaviors of metallic materials by comparing numerical and experimental results of the Taylor impact tests. Several uniaxial tensile tests are performed at different strain rates and temperatures by using three kinds of materials:...
Gespeichert in:
Veröffentlicht in: | Key Engineering Materials 2016-09, Vol.715, p.153-158 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 158 |
---|---|
container_issue | |
container_start_page | 153 |
container_title | Key Engineering Materials |
container_volume | 715 |
creator | Huh, Hoon Park, Lee Ju Piao, Ming Jun Kim, Hyung Won Lee, Ik Jin |
description | This paper is concerned with the validation of the dynamic hardening behaviors of metallic materials by comparing numerical and experimental results of the Taylor impact tests. Several uniaxial tensile tests are performed at different strain rates and temperatures by using three kinds of materials: 4130 steel (BCC); OFHC copper (FCC); and Ti6Al4V alloy (HCP). Uniaxial material tests are performed at a wide range of strain rates from 10−3 s−1 to 103 s−1. Moreover, tensile tests are performed at temperature of 25 °C and 200 °C at strain rates of 10−3 s−1, 10−1 s−1, and 102 s−1, respectively. A modified Johnson–Cook type thermal softening model is utilized for the accurate application of the thermal softening effect at different strain rates. The hardening behaviors of the three materials are characterized by comparing the seven sequentially deformed shapes of the projectile from numerical and experimental results of Taylor impact tests. |
doi_str_mv | 10.4028/www.scientific.net/KEM.715.153 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845791458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4199863611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2433-983d55ed3ce444716a100e92c919856f0d91f567410d183ad01ff91fccf5dfed3</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhoNWsLb9DwFBvNlpMklmkhtRS-0Wuwh2622I-eimzGa2SdZl7_rTe4YVFK-8CuS8ed5DHoTeUdJw0srz3W7XFBt9qjFE2yRfz79eLpqeioYK9gId065rZ6pX4iU6U71khEkmREfoEcwIZTMl2-41elPKAyGMSiqO0dMPM0RnahwTHgOuK4_nJjufYrrHn_3K_IpjLjiMGS98NcMQLV6Y6nM0Q8Gm4nm8X-Hbmk1M-DsMsEkOL_1647Op2-zxzz2-KxNtYi_NfgDU9XpjbIVYqafoVQCUP_t9nqC7L5fLi_ns5tvV9cWnm5ltOZtWZ04I75j1nPOedoYS4lVrFVVSdIE4RYPoek6Jo5IZR2gIcGVtEC7AuxP0_sDd5PFxC8V6HYv1w2CSH7dFU8lFrygXEqJv_4k-jNucYDtItVM5b1tIfTikbB5LyT7oTY5rk_eaEj0J0yBM_xGmQZgGYRqEaRAGgI8HAHxeKtXb1V89_4d4BrvRpTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1824716422</pqid></control><display><type>article</type><title>Validation of the Hardening Behaviors for Metallic Materials at High Strain Rate and Temperature by Using the Taylor Impact Test</title><source>Scientific.net Journals</source><creator>Huh, Hoon ; Park, Lee Ju ; Piao, Ming Jun ; Kim, Hyung Won ; Lee, Ik Jin</creator><creatorcontrib>Huh, Hoon ; Park, Lee Ju ; Piao, Ming Jun ; Kim, Hyung Won ; Lee, Ik Jin</creatorcontrib><description>This paper is concerned with the validation of the dynamic hardening behaviors of metallic materials by comparing numerical and experimental results of the Taylor impact tests. Several uniaxial tensile tests are performed at different strain rates and temperatures by using three kinds of materials: 4130 steel (BCC); OFHC copper (FCC); and Ti6Al4V alloy (HCP). Uniaxial material tests are performed at a wide range of strain rates from 10−3 s−1 to 103 s−1. Moreover, tensile tests are performed at temperature of 25 °C and 200 °C at strain rates of 10−3 s−1, 10−1 s−1, and 102 s−1, respectively. A modified Johnson–Cook type thermal softening model is utilized for the accurate application of the thermal softening effect at different strain rates. The hardening behaviors of the three materials are characterized by comparing the seven sequentially deformed shapes of the projectile from numerical and experimental results of Taylor impact tests.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>ISBN: 9783038355601</identifier><identifier>ISBN: 3038355607</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.715.153</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Chromium molybdenum steels ; Hardening ; Hardening rate ; High strength steels ; Impact tests ; Mathematical models ; Projectiles ; Softening ; Strain rate ; Tensile tests ; Titanium base alloys</subject><ispartof>Key Engineering Materials, 2016-09, Vol.715, p.153-158</ispartof><rights>2016 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4130?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Huh, Hoon</creatorcontrib><creatorcontrib>Park, Lee Ju</creatorcontrib><creatorcontrib>Piao, Ming Jun</creatorcontrib><creatorcontrib>Kim, Hyung Won</creatorcontrib><creatorcontrib>Lee, Ik Jin</creatorcontrib><title>Validation of the Hardening Behaviors for Metallic Materials at High Strain Rate and Temperature by Using the Taylor Impact Test</title><title>Key Engineering Materials</title><description>This paper is concerned with the validation of the dynamic hardening behaviors of metallic materials by comparing numerical and experimental results of the Taylor impact tests. Several uniaxial tensile tests are performed at different strain rates and temperatures by using three kinds of materials: 4130 steel (BCC); OFHC copper (FCC); and Ti6Al4V alloy (HCP). Uniaxial material tests are performed at a wide range of strain rates from 10−3 s−1 to 103 s−1. Moreover, tensile tests are performed at temperature of 25 °C and 200 °C at strain rates of 10−3 s−1, 10−1 s−1, and 102 s−1, respectively. A modified Johnson–Cook type thermal softening model is utilized for the accurate application of the thermal softening effect at different strain rates. The hardening behaviors of the three materials are characterized by comparing the seven sequentially deformed shapes of the projectile from numerical and experimental results of Taylor impact tests.</description><subject>Chromium molybdenum steels</subject><subject>Hardening</subject><subject>Hardening rate</subject><subject>High strength steels</subject><subject>Impact tests</subject><subject>Mathematical models</subject><subject>Projectiles</subject><subject>Softening</subject><subject>Strain rate</subject><subject>Tensile tests</subject><subject>Titanium base alloys</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><isbn>9783038355601</isbn><isbn>3038355607</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkV1rFDEUhoNWsLb9DwFBvNlpMklmkhtRS-0Wuwh2622I-eimzGa2SdZl7_rTe4YVFK-8CuS8ed5DHoTeUdJw0srz3W7XFBt9qjFE2yRfz79eLpqeioYK9gId065rZ6pX4iU6U71khEkmREfoEcwIZTMl2-41elPKAyGMSiqO0dMPM0RnahwTHgOuK4_nJjufYrrHn_3K_IpjLjiMGS98NcMQLV6Y6nM0Q8Gm4nm8X-Hbmk1M-DsMsEkOL_1647Op2-zxzz2-KxNtYi_NfgDU9XpjbIVYqafoVQCUP_t9nqC7L5fLi_ns5tvV9cWnm5ltOZtWZ04I75j1nPOedoYS4lVrFVVSdIE4RYPoek6Jo5IZR2gIcGVtEC7AuxP0_sDd5PFxC8V6HYv1w2CSH7dFU8lFrygXEqJv_4k-jNucYDtItVM5b1tIfTikbB5LyT7oTY5rk_eaEj0J0yBM_xGmQZgGYRqEaRAGgI8HAHxeKtXb1V89_4d4BrvRpTg</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Huh, Hoon</creator><creator>Park, Lee Ju</creator><creator>Piao, Ming Jun</creator><creator>Kim, Hyung Won</creator><creator>Lee, Ik Jin</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160901</creationdate><title>Validation of the Hardening Behaviors for Metallic Materials at High Strain Rate and Temperature by Using the Taylor Impact Test</title><author>Huh, Hoon ; Park, Lee Ju ; Piao, Ming Jun ; Kim, Hyung Won ; Lee, Ik Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2433-983d55ed3ce444716a100e92c919856f0d91f567410d183ad01ff91fccf5dfed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chromium molybdenum steels</topic><topic>Hardening</topic><topic>Hardening rate</topic><topic>High strength steels</topic><topic>Impact tests</topic><topic>Mathematical models</topic><topic>Projectiles</topic><topic>Softening</topic><topic>Strain rate</topic><topic>Tensile tests</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huh, Hoon</creatorcontrib><creatorcontrib>Park, Lee Ju</creatorcontrib><creatorcontrib>Piao, Ming Jun</creatorcontrib><creatorcontrib>Kim, Hyung Won</creatorcontrib><creatorcontrib>Lee, Ik Jin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Key Engineering Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huh, Hoon</au><au>Park, Lee Ju</au><au>Piao, Ming Jun</au><au>Kim, Hyung Won</au><au>Lee, Ik Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of the Hardening Behaviors for Metallic Materials at High Strain Rate and Temperature by Using the Taylor Impact Test</atitle><jtitle>Key Engineering Materials</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>715</volume><spage>153</spage><epage>158</epage><pages>153-158</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><isbn>9783038355601</isbn><isbn>3038355607</isbn><abstract>This paper is concerned with the validation of the dynamic hardening behaviors of metallic materials by comparing numerical and experimental results of the Taylor impact tests. Several uniaxial tensile tests are performed at different strain rates and temperatures by using three kinds of materials: 4130 steel (BCC); OFHC copper (FCC); and Ti6Al4V alloy (HCP). Uniaxial material tests are performed at a wide range of strain rates from 10−3 s−1 to 103 s−1. Moreover, tensile tests are performed at temperature of 25 °C and 200 °C at strain rates of 10−3 s−1, 10−1 s−1, and 102 s−1, respectively. A modified Johnson–Cook type thermal softening model is utilized for the accurate application of the thermal softening effect at different strain rates. The hardening behaviors of the three materials are characterized by comparing the seven sequentially deformed shapes of the projectile from numerical and experimental results of Taylor impact tests.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.715.153</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1013-9826 |
ispartof | Key Engineering Materials, 2016-09, Vol.715, p.153-158 |
issn | 1013-9826 1662-9795 1662-9795 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845791458 |
source | Scientific.net Journals |
subjects | Chromium molybdenum steels Hardening Hardening rate High strength steels Impact tests Mathematical models Projectiles Softening Strain rate Tensile tests Titanium base alloys |
title | Validation of the Hardening Behaviors for Metallic Materials at High Strain Rate and Temperature by Using the Taylor Impact Test |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20the%20Hardening%20Behaviors%20for%20Metallic%20Materials%20at%20High%20Strain%20Rate%20and%20Temperature%20by%20Using%20the%20Taylor%20Impact%20Test&rft.jtitle=Key%20Engineering%20Materials&rft.au=Huh,%20Hoon&rft.date=2016-09-01&rft.volume=715&rft.spage=153&rft.epage=158&rft.pages=153-158&rft.issn=1013-9826&rft.eissn=1662-9795&rft.isbn=9783038355601&rft.isbn_list=3038355607&rft_id=info:doi/10.4028/www.scientific.net/KEM.715.153&rft_dat=%3Cproquest_cross%3E4199863611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1824716422&rft_id=info:pmid/&rfr_iscdi=true |