Censored mixed-effects models for irregularly observed repeated measures with applications to HIV viral loads

In some acquired immunodeficiency syndrome (AIDS) clinical trials, the human immunodeficiency virus-1 ribonucleic acid measurements are collected irregularly over time and are often subject to some upper and lower detection limits, depending on the quantification assays. Linear and nonlinear mixed-e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Test (Madrid, Spain) Spain), 2016-12, Vol.25 (4), p.627-653
Hauptverfasser: Matos, Larissa A., Castro, Luis M., Lachos, Víctor H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 653
container_issue 4
container_start_page 627
container_title Test (Madrid, Spain)
container_volume 25
creator Matos, Larissa A.
Castro, Luis M.
Lachos, Víctor H.
description In some acquired immunodeficiency syndrome (AIDS) clinical trials, the human immunodeficiency virus-1 ribonucleic acid measurements are collected irregularly over time and are often subject to some upper and lower detection limits, depending on the quantification assays. Linear and nonlinear mixed-effects models, with modifications to accommodate censored observations, are routinely used to analyze this type of data (Vaida and Liu, J Comput Graph Stat 18:797–817, 2009 ; Matos et al., Comput Stat Data Anal 57(1):450–464, 2013a ). This paper presents a framework for fitting LMEC/NLMEC with response variables recorded at irregular intervals. To address the serial correlation among the within-subject errors, a damped exponential correlation structure is considered in the random error and an EM-type algorithm is developed for computing the maximum likelihood estimates, obtaining as a byproduct the standard errors of the fixed effects and the likelihood value. The proposed methods are illustrated with simulations and the analysis of two real AIDS case studies.
doi_str_mv 10.1007/s11749-016-0486-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845789850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4203828251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-b873f6b267fb3a421de7be5f0ac2ba8de9c32c163c6e32b97beeafb64ecda3843</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhk1JINukPyA3QS69KNWXZflYliQbCPTS9ipkeZR6kS1HY-fj31fL9lAKhZxmYJ53huGpqkvOrjljzRfkvFEtZVxTpoym4kO14UZLaoRmJ6XnUlKmjT6rPiLuGdNKC76pxi1MmDL0ZBxeoacQAvgFyZh6iEhCymTIGR7X6HJ8I6lDyM-FzjCDWw4xcLhmQPIyLL-Im-c4eLcMaUKyJLK7_0meh-wiicn1eFGdBhcRPv2p59WP25vv2x19-HZ3v_36QL3i9UI708igO6Gb0EmnBO-h6aAOzHnROdND66XwXEuvQYquLUNwodMKfO-kUfK8-nzcO-f0tAIudhzQQ4xugrSi5UbVjWlNzd6BSiFUI40p6NU_6D6teSqPFErUhqtWHW7zI-VzQswQ7JyH0eU3y5k9uLJHV7a4sgdXVpSMOGawsNMj5L82_zf0G0q4mMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825814944</pqid></control><display><type>article</type><title>Censored mixed-effects models for irregularly observed repeated measures with applications to HIV viral loads</title><source>SpringerLink Journals - AutoHoldings</source><creator>Matos, Larissa A. ; Castro, Luis M. ; Lachos, Víctor H.</creator><creatorcontrib>Matos, Larissa A. ; Castro, Luis M. ; Lachos, Víctor H.</creatorcontrib><description>In some acquired immunodeficiency syndrome (AIDS) clinical trials, the human immunodeficiency virus-1 ribonucleic acid measurements are collected irregularly over time and are often subject to some upper and lower detection limits, depending on the quantification assays. Linear and nonlinear mixed-effects models, with modifications to accommodate censored observations, are routinely used to analyze this type of data (Vaida and Liu, J Comput Graph Stat 18:797–817, 2009 ; Matos et al., Comput Stat Data Anal 57(1):450–464, 2013a ). This paper presents a framework for fitting LMEC/NLMEC with response variables recorded at irregular intervals. To address the serial correlation among the within-subject errors, a damped exponential correlation structure is considered in the random error and an EM-type algorithm is developed for computing the maximum likelihood estimates, obtaining as a byproduct the standard errors of the fixed effects and the likelihood value. The proposed methods are illustrated with simulations and the analysis of two real AIDS case studies.</description><identifier>ISSN: 1133-0686</identifier><identifier>EISSN: 1863-8260</identifier><identifier>DOI: 10.1007/s11749-016-0486-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acquired immune deficiency syndrome ; Acquired immunodeficiency syndrome ; AIDS ; Algorithms ; Case studies ; Clinical trials ; Computer simulation ; Correlation ; Economics ; Finance ; Fittings ; Health care ; HIV ; Human immunodeficiency virus ; Infections ; Information management ; Insurance ; Intervals ; Lentivirus ; Management ; Mathematics and Statistics ; Medical personnel ; Medical research ; Nonlinearity ; Original Paper ; Parameter estimation ; Retroviridae ; Ribonucleic acid ; Ribonucleic acids ; RNA ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Studies</subject><ispartof>Test (Madrid, Spain), 2016-12, Vol.25 (4), p.627-653</ispartof><rights>Sociedad de Estadística e Investigación Operativa 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-b873f6b267fb3a421de7be5f0ac2ba8de9c32c163c6e32b97beeafb64ecda3843</citedby><cites>FETCH-LOGICAL-c415t-b873f6b267fb3a421de7be5f0ac2ba8de9c32c163c6e32b97beeafb64ecda3843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11749-016-0486-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11749-016-0486-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Matos, Larissa A.</creatorcontrib><creatorcontrib>Castro, Luis M.</creatorcontrib><creatorcontrib>Lachos, Víctor H.</creatorcontrib><title>Censored mixed-effects models for irregularly observed repeated measures with applications to HIV viral loads</title><title>Test (Madrid, Spain)</title><addtitle>TEST</addtitle><description>In some acquired immunodeficiency syndrome (AIDS) clinical trials, the human immunodeficiency virus-1 ribonucleic acid measurements are collected irregularly over time and are often subject to some upper and lower detection limits, depending on the quantification assays. Linear and nonlinear mixed-effects models, with modifications to accommodate censored observations, are routinely used to analyze this type of data (Vaida and Liu, J Comput Graph Stat 18:797–817, 2009 ; Matos et al., Comput Stat Data Anal 57(1):450–464, 2013a ). This paper presents a framework for fitting LMEC/NLMEC with response variables recorded at irregular intervals. To address the serial correlation among the within-subject errors, a damped exponential correlation structure is considered in the random error and an EM-type algorithm is developed for computing the maximum likelihood estimates, obtaining as a byproduct the standard errors of the fixed effects and the likelihood value. The proposed methods are illustrated with simulations and the analysis of two real AIDS case studies.</description><subject>Acquired immune deficiency syndrome</subject><subject>Acquired immunodeficiency syndrome</subject><subject>AIDS</subject><subject>Algorithms</subject><subject>Case studies</subject><subject>Clinical trials</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>Economics</subject><subject>Finance</subject><subject>Fittings</subject><subject>Health care</subject><subject>HIV</subject><subject>Human immunodeficiency virus</subject><subject>Infections</subject><subject>Information management</subject><subject>Insurance</subject><subject>Intervals</subject><subject>Lentivirus</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Medical personnel</subject><subject>Medical research</subject><subject>Nonlinearity</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Retroviridae</subject><subject>Ribonucleic acid</subject><subject>Ribonucleic acids</subject><subject>RNA</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Studies</subject><issn>1133-0686</issn><issn>1863-8260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkU1r3DAQhk1JINukPyA3QS69KNWXZflYliQbCPTS9ipkeZR6kS1HY-fj31fL9lAKhZxmYJ53huGpqkvOrjljzRfkvFEtZVxTpoym4kO14UZLaoRmJ6XnUlKmjT6rPiLuGdNKC76pxi1MmDL0ZBxeoacQAvgFyZh6iEhCymTIGR7X6HJ8I6lDyM-FzjCDWw4xcLhmQPIyLL-Im-c4eLcMaUKyJLK7_0meh-wiicn1eFGdBhcRPv2p59WP25vv2x19-HZ3v_36QL3i9UI708igO6Gb0EmnBO-h6aAOzHnROdND66XwXEuvQYquLUNwodMKfO-kUfK8-nzcO-f0tAIudhzQQ4xugrSi5UbVjWlNzd6BSiFUI40p6NU_6D6teSqPFErUhqtWHW7zI-VzQswQ7JyH0eU3y5k9uLJHV7a4sgdXVpSMOGawsNMj5L82_zf0G0q4mMI</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Matos, Larissa A.</creator><creator>Castro, Luis M.</creator><creator>Lachos, Víctor H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0T</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>7U9</scope><scope>H94</scope></search><sort><creationdate>20161201</creationdate><title>Censored mixed-effects models for irregularly observed repeated measures with applications to HIV viral loads</title><author>Matos, Larissa A. ; Castro, Luis M. ; Lachos, Víctor H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-b873f6b267fb3a421de7be5f0ac2ba8de9c32c163c6e32b97beeafb64ecda3843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acquired immune deficiency syndrome</topic><topic>Acquired immunodeficiency syndrome</topic><topic>AIDS</topic><topic>Algorithms</topic><topic>Case studies</topic><topic>Clinical trials</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>Economics</topic><topic>Finance</topic><topic>Fittings</topic><topic>Health care</topic><topic>HIV</topic><topic>Human immunodeficiency virus</topic><topic>Infections</topic><topic>Information management</topic><topic>Insurance</topic><topic>Intervals</topic><topic>Lentivirus</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Medical personnel</topic><topic>Medical research</topic><topic>Nonlinearity</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Retroviridae</topic><topic>Ribonucleic acid</topic><topic>Ribonucleic acids</topic><topic>RNA</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matos, Larissa A.</creatorcontrib><creatorcontrib>Castro, Luis M.</creatorcontrib><creatorcontrib>Lachos, Víctor H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Healthcare Administration Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Test (Madrid, Spain)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matos, Larissa A.</au><au>Castro, Luis M.</au><au>Lachos, Víctor H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Censored mixed-effects models for irregularly observed repeated measures with applications to HIV viral loads</atitle><jtitle>Test (Madrid, Spain)</jtitle><stitle>TEST</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>25</volume><issue>4</issue><spage>627</spage><epage>653</epage><pages>627-653</pages><issn>1133-0686</issn><eissn>1863-8260</eissn><abstract>In some acquired immunodeficiency syndrome (AIDS) clinical trials, the human immunodeficiency virus-1 ribonucleic acid measurements are collected irregularly over time and are often subject to some upper and lower detection limits, depending on the quantification assays. Linear and nonlinear mixed-effects models, with modifications to accommodate censored observations, are routinely used to analyze this type of data (Vaida and Liu, J Comput Graph Stat 18:797–817, 2009 ; Matos et al., Comput Stat Data Anal 57(1):450–464, 2013a ). This paper presents a framework for fitting LMEC/NLMEC with response variables recorded at irregular intervals. To address the serial correlation among the within-subject errors, a damped exponential correlation structure is considered in the random error and an EM-type algorithm is developed for computing the maximum likelihood estimates, obtaining as a byproduct the standard errors of the fixed effects and the likelihood value. The proposed methods are illustrated with simulations and the analysis of two real AIDS case studies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11749-016-0486-2</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1133-0686
ispartof Test (Madrid, Spain), 2016-12, Vol.25 (4), p.627-653
issn 1133-0686
1863-8260
language eng
recordid cdi_proquest_miscellaneous_1845789850
source SpringerLink Journals - AutoHoldings
subjects Acquired immune deficiency syndrome
Acquired immunodeficiency syndrome
AIDS
Algorithms
Case studies
Clinical trials
Computer simulation
Correlation
Economics
Finance
Fittings
Health care
HIV
Human immunodeficiency virus
Infections
Information management
Insurance
Intervals
Lentivirus
Management
Mathematics and Statistics
Medical personnel
Medical research
Nonlinearity
Original Paper
Parameter estimation
Retroviridae
Ribonucleic acid
Ribonucleic acids
RNA
Statistical Theory and Methods
Statistics
Statistics for Business
Studies
title Censored mixed-effects models for irregularly observed repeated measures with applications to HIV viral loads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A21%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Censored%20mixed-effects%20models%20for%20irregularly%20observed%20repeated%20measures%20with%20applications%20to%20HIV%20viral%20loads&rft.jtitle=Test%20(Madrid,%20Spain)&rft.au=Matos,%20Larissa%20A.&rft.date=2016-12-01&rft.volume=25&rft.issue=4&rft.spage=627&rft.epage=653&rft.pages=627-653&rft.issn=1133-0686&rft.eissn=1863-8260&rft_id=info:doi/10.1007/s11749-016-0486-2&rft_dat=%3Cproquest_cross%3E4203828251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825814944&rft_id=info:pmid/&rfr_iscdi=true